Seminar: Formal Specification

Security of Multithreaded Programs by
Compilation

Pascal Wittmann, Advisor: Artem Starostin

TU Darmstadt

1 DMotivation

Protecting the confidentiality of information that is processed by a modern com-
puter is challenging and important, since more and more sensitive information
is fed to them. Access control and encryption are not enough to ensure this con-
fidentiality, because the usage of the information after the access or decryption
is not restricted. It is necessary to control the information flow to protect the
sensitive information. On modern mobile devices sensitive information is pro-
cessed and programs are executed multithreaded (e.g. to prevent lock ups when
establishing a network connection). Through the timing difference of the sched-
uled threads it is likely that sensitive information is leaked and an attacker may
obtain sensitive data.

The idea Barthe, Rezk, Russo and Sabelfeld phrased in [BRRS07] was to
close this leak (formally called covert channel) by annotating the byte-code of
the progranﬂ with security labels according to the confidentiality of the infor-
mation, which causes the scheduler to hide threads that leak information from
the attacker. Their formal model allows to formulate this idea as a framework,
which can be instantiated with many programming languages, schedulers and
types of byte-code.

2 Introduction to the research area

The challenge to protect the confidentiality of information processed by a com-
puter lead thirty years ago (c.f. [Zda04]) to the research on the security of
information-flows, because of the shortcomings of the standard methods. These
standard methods are: Access control and encryption. Where access control en-
sures that the data is only accessed by an authorized entity, and encryption
ensures that data can be securely transmitted over an insecure channel. But all
these methods cover the release of information and not the further propagation
(i.e. how the information is used after having access to it or decrypting it). This
is the place where information-flow security comes into play.

! Most operating systems for mobile devices use some sort of byte-code (e.g. Android)
for application software.

The idea is to "track and regulate”|Zda04] where information flows to prevent
the leak of secret information. The ways on which the information flows through
the system are called channels. Channels that are not intended to transport
information are called covered channels. These covered channels can be classified
into the following categories [SM03] (in the following examples h is a secret
variable and [a variable that is public):

— FExplicit and implicit flows: In an explicit flow the information is leaked
directly into some public variable (e.g. I := h), while in implicit flows the
information is leaked through the control structure of the program (e.g.
if h=1thenl:=1else!:=0).

— Probabilistic channels: If an attacker is able to run a computation multiple
times, he might be able to obtain information by looking at the probability
distribution of the public outputs.

— Power channels: If the attacker has physical access to the computer or at
least can figure out the power consumption, he might be able to obtain data
through the changing power consumption.

— Resource erhausting channels: Information also may be leaked through the
exhaustion of finite (mostly physical) resources (e.g. a buffer overflow).

— Termination channels: The attacker can obtain information through the ter-
mination or non-termination of the computation or program.

— Timing channels: Information can be obtained through the time at which
this action occurs. On the one hand external timing channels cover the ac-
tions like the termination of the program, where the attacker obtains infor-
mation from the total execution time of the program. On the other hand
internal timing channels occur in multithreaded programs through the tim-
ing difference between threads. For example the two threaded (denoted with
1) program

if h =1 {sleep(100)} ; 1 :=1 || sleep(50) ; 1:=0

executed with most schedulers will leak the information of A into [through
the timing difference between h = 1 and h = 0.

The notion of confidentiality that is used in most work in the area of infor-
mation-flow security is moninterference. This policy is defined in various ways
but the essence is, that it requires “that secret information [do] not affect [the]
publicly observable behavior of a system” [Zda04jﬂ For most real world applica-
tions this policy is far too strict, because it forbids useful programs like password
checkersﬂ Approaches that allow controlled release of information are called de-
classification. The kinds of declassification are what information is released, who
released this information, where in the system the information is released and
when the information is released (c.f. [SS05]). For these approaches it is necessary
that an active attacker can only know as much as a passive attacker.

2 Even if the attacker has full access to the source code of the program.
3 A password checker needs to reveal whether the user input was correct or not.

Mechanisms for controlling the information flow can be implemented either
dynamic or static. Dynamic approache&ﬂ label the information with security
labels and propagate these labels wherever the information is used. Static ap-
proache analyze the program code and are therefor far more promising, because
with these approaches it is possible to check all evaluation paths.

The paper resumed in the following concentrates on internal timing channels
with a noninterference policy.

3 Summary of the article

In this summary I will follow mainly the structure of the original paper [BRRS07]
which is as follows. First the basic terms and definitions for multithreaded pro-
grams and the scheduler are laid. After that the notion of security we want to
achieve is presented. Along with this a skeleton of a type system is described,
which ensures that a program typeable in this type system is secure. The proof
that this holds is sketched in the following section. In the last section the abstract
framework is instantiated with a concrete example.

3.1 Syntax and Semantics of multithreaded programs

A program is viewed as an abstract thing, which consists of a set of program
points P with a distinguished entry (1) and exit point (exit) and a function P
that maps program points to instructions.

These instructions are not further specified, but contain an instruction to
create a new thread (start pc where pc is the start instruction of the new
thread). The instructions without start are called SeqIns.

Further, there is a relation — that describes possible successor instructions.
exit is the only program point with no successor and start pc may only have
a single successor (the following program point).

The next thing introduced are the security levels. We assume the attacker ”is”
a level k. From this assumption we can reduce every set of security levels w.l.o.g
into Level = {low, high}, where low < high, by mapping elements that are no
more sensitive than k£ to low and all other elements — including incomparable
ones — to high. It is also assumed, that access control works correctly (i.e. the
attacker can not access high elements directly).

To connect programs and security levels, a security environment (se) is de-
fined, which is used to prevent flows over implicit channels. A security environ-
ment is a function that maps program points to security levels. A program point
i is called high if se(i) = high, low if se(i) = low and always high if all points j
reachable (according to —) from i satisfy se(j) = high and i is a high program
point.

4 The taint mode of the programming language Perl uses this mechanism.
® This mechanism is implemented in Jif for Java and Flow Caml for Caml.

Now we come to the semantics part. The main idea is to build the semantics
for multithreaded programs by combining the semantics for sequential programs
with a scheduler.

All activd®] threads are collected in a set Thread. The state of the concurrent
running threads (ConcState) is defined as the product of the partial function
space (T'hread — LocState) and the set of global memories GMemory. Where
LocState is the internal memory of a thread (from there no information can
leak, because everything is private/internal) and the global memory GMemory
which is the critical part of the system, because it is a memory shared between
all active threads.

At this point a first simplification can be made. Looking a state s € ConcState
we can first extract the active threads (s.act) by taking the domain of the first
component. According to a security environment we can classify these threads,
with respect to their current program point (s.pc(tid) where tid € Thread),
into low threads if the current program point is low. In high threads if the current
program point is high. In always high threads if the current program point is
always high and in hidden threads, if the current program point is high but not
always high.

The last two are the interesting ones. If a thread is always high it can not
leak any information into low, because it never gets in touch with low program
points. So these threads can safely be interleaved between all other threads by
the scheduler.

The hidden threads are the ones we have to care about. These contain obvi-
ously high information in the current program point, but have subseqent instruc-
tions that deal with low information. Since the attacker can watch the low part
of the memory, chances are good that he can deduce high information through
looking at changing low outputs. To prevent indirect flows that are introduced
by these hidden threads, the scheduler will be modified to treat these threads in
a special way. This will be done by "hiding” these threads, therefore comes the
name of them.

To complete our multithreaded setup we need a scheduler. The scheduler will
operate on histories. A history is a list of pairs (t¢id,), where tid € Thread and
[€ Level. In this history all threads chosen by the scheduler are recorded.

At this point no concrete scheduler is defined to make the framework ap-
plicable for a wide class of schedulers. A scheduler is in this class if it can be
modeled as a function pickt : ConcState x History — Thread which satisfies the
following constraints:

1. Tt always picks an active thread
2. If there is a hidden thread, always choose high or always high threadsﬂ

3. Only use low information and the low part of the history to choose a new
thread

5 A thread is active from start pc until it reaches the exit point.
" With this constraint the interleaving of always high threads is realized.

To define what noninterference means we need a notion of execution. It is
assumed that we have a sequential execution relation ~»4.,C SeqState x SeqState.
One step execution for the multithreaded language ~».on.C (ConcState x History) x
(ConcState x History) is defined by the rules in figure

pick(s, h) = ctid
s.pe(ctid) =14 P[i] € Seqlns (s(ctid), s.gmem) ~rseq O, o.pc # exit

8y h ~rcone S[lst(ctid) := o, gmem := pl, (ctid, se(7)) :: h

pick(s, h) = ctid
s.pc(ctid) =4 P[i] € SeqlIns (s(ctid), s.gmem) ~>seq 0, 1 o.pc = exit

Sy h ~cone s[lst := st ctid, gmem := p), (ctid, se(i)) :: h

pick(s, h) = ctid s.pe(ctid) =1
P[i] = start pc freshtgey(s) = ntid s(ctid).[pc:=i+1] =0’
5, h ~cone s.[lst(ctid) := o', Ist(ntid) := Ainit(pc)], (ctid, se(i)) :: h

Fig. 1. Multithreaded execution.

The scheduler is allowed to pick a new thread after every transition of ~»g.q.
The intuition of the first rule is, that the scheduler picks a new thread coed which
is at program point ¢. This program point maps to an sequential instruction. The
execution of this instruction leads to a local state o and a global memory p. If this
is the case and the instruction i was not the last instruction (i.e. o.pc # exit),
then the concurrent transition can be made. In this transition the concurrent
state is updated according to the results of the sequential execution and the
thread identifier, furthermore security level of i is recorded in the history.

The second rule covers the case in which the thread picked by the scheduler
has only the current instruction before terminating (i.e. o.pc = exit). In the
concurrent transition the current thread identifier is removed from the concurrent
state and everything else is like in the first rule.

The third rule introduces the dynamic creation of new threads. In this rule
the function fresh;] takes a set of thread identifiers and returns a new thread
identifier at level [and A;n;; : P — LocState produces an initial state with
the program pointer at the given program point. If the current instruction at
program point 7 is the start instruction, a new thread identifier is picked w.r.t.
the security level of ¢, then program counter of the current thread is increased
by one, to step to the next instruction. The resulting concurrent state includes
the updated state of the current thread and the initial state for the new thread.

8 Tt is assumed that fresh;(tid) # freshy (tid) < 1 #1'.

The global memory is not modified and the history is extended with the current
thread identifier and the security level of <.

Based on this an evaluation relation {.on.C (ConcStatex History) x GMemory)
is defined by

*
conc

S, h Veone e 38 0 0 (s,h~k 8 W) Asact =D A s’ .gmem = pu

The intuition is that the state s evaluates according to a history h to a final
global memory p iff there is a sequence of concurrent executions that terminates
(i.e. there are no active threads left) and has the global memory u. ~% . is the
reflexive and transitive closure of ~.qpec.

Pt Veone 1’ is a shorthand for ((main, Ninic(1)), i), €5 Ueone p', where
main is the identity of the main thread and €"*s* the empty history.

Now we can define our goal: Noninterference. We define noninterference in
accordance to an indistinguishability relation ~4 on global memories. Barthe et.
al. state that it is not necessary — for the purpose of the paper — to specify the
definition of this relation. But to get a feeling for this relation, one can define it
as: 1 ~g ' S fliow = 110w Where pfio, projects out all high elements. Based
on that a program P is non-interfering if for all global memories p1, ps,) and
5 it holds that:

H1 ~g K2 A\ (P7 125} “conc Mll) A (Pa M2 uconc /-/2) = :ull ~g /J’/2

3.2 Type system

The type system is the core part of the framework in the sense that it enforces
the previously defined noninterference property. Thus every program which is
typeable, is non-interfering.

The type system for multithreaded programs is build up from a type system
for sequential programs for which the following assumptions hold:

1. We have a partial ordered set (LType, <) of local types, with an initial type
Tinit

2. and typing judgments of the form se,i Fsq S = T, where s, T € LType,
i € P and se is a securirty environment.

The intuition of the typing judgment is, that if we execute the instruction
at program point ¢ w.r.t. the security environment se and the current type is S,
then the type after the execution is T.

This type system is extended by the rules in figure 2] to support multithread-
ing.

The first rule states, that sequential commands are treated as usual and the
second rule ensures, that the security level of the entry point of the spawned
thread, is lower bounded by the level of the start instruction.

A program is typeable in this type system (written S,se - P), where S is a
function § : P — LType that maps a local type to every program point and se a

P[i] € Seqlns s€,iFseq S =T P[i] = start pc se(i) < se(pc)

se,iFs=T se,iFS =5

Fig. 2. Extension of the sequential typing rules.

security environment, iff S maps every initial program pointﬂ to Tinit and that
for every program point j, which is an successor of ¢, there is a type s € LType,
such that s is lower bounded by S(j) and se,i - S(i) = s holds.

3.3 Soundness

The framework is now complete, but the proof of the connection between the
type system and the noninterference property is still outstanding. The full proof
is not part of the paper and I will only sketch the most important parts.

The goal is to proof the following theorem:

Theorem 1. If the scheduler is secure and se,S F P, then P is non-interfering.

The scheduler is secure, if it is defined w.r.t. the conditions from section [3.1}

An important hypothesis to succeed in the proof of this theorem is the ex-
istence of a next function. This next function should compute for every high
program point the first subsequent program point with a low security level. With
this function one is able to detect when a hidden thread is allowed to become
visible again.

This intuition is capture in the following properties for the function next :

P —P:

NePd Dom(next) = {i € P|se(i) = high A3j € P.i —" j A se(j) # high}

NeP1 1,5 € Dom(next) A i+ j = next(i) = next(j)

NeP2 i € Dom(next) A j & Dom(next) Ai— j = next(i) =j

NeP3 j,k € Dom(next) Ai & Dom(next) Ni— jAir— kAj#k= next(j) = next(k)
NeP4 1,5 € Dom(next) ANk & Dom(next) Ni— jAi—kAj#k= next(j) =k

where —* is the reflexive and transitive closure of .

The domain of next (i.e. NePd) captures the high, but not always high pro-
gram points (i.e. the ones that can result in a hidden thread). The property
NeP1, states that two directly successive high program points have the same
program point in which the thread becomes visible again. The property NeP2
is the counterpart of the NeP1: If a low program point follows a high program
point, this low program point is the result of the next function for the high pro-
gram point. NeP3 and NeP4 denote that the next of an outermost if respective
while instruction is at least after the control dependence region.

9 Including the ones of spawned threads.

3.4 Instantiation

To demonstrate how the framework can be used, it was instantiated with a
simple assembly language, which is given by the following grammar:

instr ::= binop op binary operation with values from stack
| push n push value on the stack
| load z push value of variable on the stack
| store x store first element of the stack in x
| goto j | ifeq j un-/conditional jump to j
| start j create a new thread starting in j

where op € {+, —, X, /}, n € Z and x are variables. The operational semantics
are standard and not explicitly necessary for the following instantiation, therefor
they are omitted.

The local states are modeled as a pair of the operand stack and the program
counter. The initial state A;,;+(pc) has an empty operand stack € and points to
the given initial program point.

Besides this concrete language we need to define a type system to enforce
noninterference according to section[3.2] The local types are defined by a stack of
security levels LType = Stack(Level) and T;,;; with the empty stack. The typing
rules defined in figure [2| are extended with rules for the concrete instructions of
the assembly language in figure [3] In this summary I only explain two of them,
the rest follows in a similar manner.

P[i] = store x se(i) Uk < I'(x) P[i] = ifeq j Vi' € reg(i), k < se(5")
s€,0 Fgeq k 2 st = st s€,i bFseq ki st = lifti(st)

Fig. 3. Excerpt of typing rules for the assembly language.

The security levels in LType are the security levels of the operands in the
local state. To express our security policy, we declare a function I'(x) that assigns
to every variable x a security level. If we now want to store the top of the stack
into the variable z, one premise is that the security level of the program point
se(i) and the security level of the value on top of the operand stack is lower or
equal to the security level that was assigned by I' to the variable x. If this is
the case the head of LType is removed. The LI operator is like a logical ”or”, it
returns the higher of the given security values.

The rule for the branching instruction can only be used if the security level
of all program points in the control dependence region are lower bounded by the
security level of the value that is used as the condition (i.e. the top of the operand

stack). The function lift) : Level — Stack(Level) — Stack(Level) extends U to
stacks of security levels. This ensures, that every program point in the control
dependence region has the same security level as the branching point.

The next step is to construct the next function. To make this task easy,
we introduce a source language which will be complied into the given assembly
language. The source language is defined as follows:

ex=n|xz|eope cu=x := e|cc|if ethen celse ¢ | while e do ¢ | fork(c)

Now it is easy to define the control dependence region and the junction
points for the source language and deduce the ones for the assembly language
from them. The first step is to label the source language at the regions at risk
with natural numbers:

cu=[x := €]" | ¢;c| [if e then c else ¢]” | [while e do ¢]" | [fork(c)]"

According to this labels we can define the control dependence regions for the
source language:

Definition 1. The control dependence region sregion(n) for a branching com-
mand [c]™ in the source language is defined as the labels inside the branching
command, except for those ones that are inside a fork command.

Now we can define tregion according to a compilation function C. I won’t
define the compilation function here, because it is not essential how it exactly
looks like.

Definition 2. tregion(n) is defined as the set of instruction labels obtained by
compiling the commands [/ of the branching instruction [c]™ of the source code
with a compilation function C.

With this definition of tregion in mind, it is easy to define the junction
points.

Definition 3. The junction points are computed by a function jun : P — P.
This function is defined on all junction points [c]™ in the source program as
jun(n) = mazx{i | i € tregion(n)} + 1.

Intuitively a junction point according to this definition is the point that
follows on the last instruction that is affected by the branching instruction.

This looks familiar to the next function we want to define[l] The part that is
missing, is the restriction to outermost branching points whose guards involves
secrets.

To make this distinction a new type system is introduced. Type judgments
have the form k. [c|?, : E, where E is a function that maps labels to security

10 We could define next for every instruction 4 inside an outermost branching point
[c]™ as next(i) = jun(n).

levelsE « denotes if ¢ is part of a branching instruction that branches on secret
(e) or public (o) data and «’ is the security level of the guard in the branching
instruction.

We now take a look at the rules of this type system concerning the if in-
struction, which are defined in figure [

L-ConD H-ConD
Fe: L Fac: B Focd E Fe: H Fec: Fec : E
o [if e then c else ¢ : E Fo [if e then c else ¢']y : E

Tor-H-CoND
Fe:H Fec: E Foec : E E =liftu(E, sregion(n))

ko [if e then c else ¢']y : E

Fig. 4. Typing rules for if on source level.

The first rule L-CoND from Figure [d] says that if we branch on a low guard,
then everything depends on the security level of ¢ and ¢’. The rule H-COND covers
the case where we have a high guard, in this case the control dependence region
has to be marked high. The rule ToP-H-COND is the interesting one. Because
of the preceding rules we can not be part of branch with a low guard, therefore
we are in the outermost high branch. The premise E' = lifty (FE, sregion(n))
reads as: For all labels in the control dependence region E is defined as E’(n) =
H U E(n) and E'(n) = E(n) for all other labels.

This type system is powerful enough to prevent explicit and implicit flows
and can therefor replace the type system defined previously.

With this type system in mind, we can now define our next function.

Definition 4. For every branching point c in the source program such that
Fo [c]2, the next function is defined as Yk € tregion(n). next(k) = jun(n).

The proof that this definition fulfills the properties from section [3.3 and all
other proofs can be found in [BRRS09].

Now the instantiation of the framework is complete, except for the scheduler
which was left unspecified in the paper.

1 Given E it is easy to define a security environment se. For a definition of F see
[BNRO6].

10

4 Comparison with other approaches/further work

In this section I will first give a short overview of two other approaches and then
compare them with the approach presented before and draw a conclusion.

4.1 Observational Determinism for Concurrent Program
Security[ZMO03]

Zdancewic and Myers approach has the goal to provide a secure concurrent
language that has a general and realistic support for concurrency and whose
security can be checked statically.

They introduced the language ALAZ which supports higher-order functions,
an unbounded number of threads, synchronization (via join patterns), message
passing and shared memory. Regardless of those realistic features)\gég is not
intended to server as a user-level programming language because its syntax and
type system is too awkward. Instead it is only used a model for studying infor-
mation flow.

Low-security observational determinism is used to enforce noninterference.
The idea is to make the naturally nondeterministic system, deterministic from
the point of view of the attacker.

This deterministic noninterference is defined as

(meem Am{yTAmM §T) =T T

where T and T” are traces of the execution of a program. m and m’ are initial
configurations. Let T'(L) = [Mo(L), M;1(L),...] be the list of values at location
L in the trace T. T ~¢ T" holds if the values of T'(L) and T"(L) are pairwise
indistinguishable. Since it is allowed that one sequence is a prefix of the other,
there is no need to proof termination, but external timing attacks are possible.
This notion of observational determinism is captured in a type system for

AEAE thus the security of programs can be checked statically.

4.2 Flexible Scheduler-Independent Security[MS10]

This approach developed by Mantel and Sudbrock has the goal to be on the one
hand scheduler independent and on the other not too restrictive.

To reach this goal they model the scheduling explicit but general enough
to apply to a wide class of common schedulers. So rather than talking about
program states, they introduce system configurations which contains a list of
threads (thread pool) the global memory and the scheduler state. The scheduler
is able to store information in its state and can retrieve input (e.g. the number
of active threads). Based on this information the scheduler makes decisions.
To cover nondeterministic schedulers (e.g. the uniform scheduler) the decision
making of the scheduler and the execution of the program is probabilistic.

11

Based on this scheduler model, a schedule-specific security property S is
defined on thread pools. Intuitively a thread pool is S-secure if the probability
of running a program with system configuration conf under the scheduler &
resulting in a global memory m is the same as running it with configuration
conf’ resulting in m/, and satisfying that m = m’.

The novel security property introduced in this paper is defined without men-
tioning the scheduler and equal to S-security for a robust scheduler S. Therefor
this property is called flexible scheduler-independent security (FSI-security). A
thread pool is FSI-secure if (starting from an low-equal memory configuration)
the resulting memories are always low-equal when executing commands that
potentially modify low-variables and if spawned threads are also FSI-secure.

Those robust schedulers are those, for which "the scheduling of low threads
during a Tun of a FSI-secure thread pool remains unchanged when one removes
all high threads from the thread pool”[MS10].

If a program is FSI-secure or not is checked statically with a security type
system, which is introduced for a sample while-language.

4.3 Conclusion

The approach of Barthe et. al. shows how to build a framework to create type-
annotated programs that can be check statically and can be run independent of
the scheduling algorithm. Thus there is no need to trust the compiler.

In contrast to Mantel and Sudbrocks work the whole framework depends
heavily on the security of the scheduler. It is possible to choose most scheduling
algorithms, but every algorithm needs to be modified satisfy the properties for a
secure scheduler. Additionally its likely that the interface of the scheduler needs
to be changed/extended in nearly ever implementation. The FSI-security instead
is applicable to every robust scheduler without changing the algorithm or the
interface.

The approach also (currently) lacks support for real world languages. For ex-
ample support of synchronization would be necessary to implement the approach
for Java. The approach of Zdancewic and Myers supports those features, but is
much more restrictive. Due to the use of observational determinism obviously
secure programs like 1 := 1 || 1 := 0 are rejected. The approach of Barthe
et. al. does not reject those programs and is in that sense much more permissive.

In the end Barthe et. al. presented a framework with reaches many goals
(like permissiveness, statically check-able and requires no intervention from the
programmer) but needs to modify the scheduler interface, which makes it hard
to use for real programs. In addition they did not showed how to implement the
type-annotations in a real language.

12

References

BNRO06.

BRRSO07.

BRRS09.

MS10.

SMO03.

SS05.

Zda04.

ZMO03.

Gilles Barthe, David Naumann, and Tamara Rezk. Deriving an information
flow checker and certifying compiler for java. In In 27th IEEE Symposium
on Security and Privacy, pages 230-242. IEEE Press, 2006.

Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Secu-
rity of multithreaded programs by compilation. In In Proc. 12th European
Symposium on Research in Computer Security, pages 2—18. Springer-Verlag,
2007.

Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Secu-
rity of multithreaded programs by compilation. http://www.cse.chalmers.
se/~russo/tissecfull.pdf, 2009.

Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent secu-
rity. In Proceedings of the European Symposium on Research in Computer
Security (ESORICS), LNCS 6345, pages 116-133. Springer, 2010.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21:2003, 2003.
Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-
ples. In In Proceedings of the 18th IEEE Workshop on Computer Security
Foundations (CSFW05), pages 255-269, 2005.

Steve Zdancewic. Challenges for information-flow security. In In Proc. Pro-
gramming Language Interference and Dependence (PLID), 2004.

Steve Zdancewic and Andrew C. Myers. Observational determinism for con-
current program security. In In Proc. 16th IEEE Computer Security Foun-
dations Workshop, pages 2943, 2003.

13

http://www.cse.chalmers.se/~russo/tissecfull.pdf
http://www.cse.chalmers.se/~russo/tissecfull.pdf

	Seminar: Formal Specification [1ex] Security of Multithreaded Programs by Compilation
	Pascal Wittmann, Advisor: Artem Starostin

