
Bachelor Thesis
Bachelor of Science Informatik

Confidentiality for Multithreaded Dalvik

Programs by SIFUM Security

Pascal Wittmann

Technische Universität Darmstadt

Fachbereich Informatik

Fachgebiet Modeling and Analysis of Information Systems

Prüfer: Prof. Dr.-Ing. Heiko Mantel

Betreuer: M.Sc. Matthias Perner

Abgabetermin: 18. März 2013

Erklärung

Hiermit versichere ich gemäß der Allgemeinen Prüfungsbestimmungen der Tech-
nischen Universität Darmstadt (APB) §23 (7), die vorliegende Bachelorarbeit
ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln ange-
fertigt zu haben. Alle Stellen, die aus den Quellen entnommen wurden, sind als
solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Ort, Datum (Pascal Wittmann)

Abstract

Non-interference properties on programs describe the absence illicit information
flows. We focus on non-interference properties for the byte-code language of the
Dalvik virtual machine (DVM). The DVM executes programs on Android, a
popular operating system for mobile phones. Most programs for Android make
extensive use of multi-threading to ensure smooth responses to user interactions.
We introduce an abstract transition system that supports multi-threading and
instantiate it with a subset of the DVM. To capture the notion of secure/legal
information flow for this abstract transition system, we introduce a bisimula-
tion based non-interference property that exploits the intended data usage of
concurrently executed threads.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Structure . 4
1.4 Notational Conventions . 5

2 Transition System 6
2.1 The Execution Model of the DVM 6
2.2 SIFUM Security in Context of the DVM 7
2.3 Abstract Transition System . 8

2.3.1 Program . 8
2.3.2 Call Stack . 10
2.3.3 Heap . 11
2.3.4 Assumptions and Guarantees 12
2.3.5 Configurations . 12
2.3.6 Transition Relation . 13

3 SIFUM Security 16
3.1 Security Policy . 16
3.2 Attacker Model . 16
3.3 Indistinguishability Relations . 17
3.4 Register Domain Assignments . 21
3.5 Security Property . 24
3.6 Compositionality . 28

4 Instances of the Transition System 32
4.1 Sequential Subset of Dalvik . 32
4.2 Static Thread Structure . 42
4.3 Dynamic Thread Creation . 44

5 Summary 48
5.1 Conclusion . 48
5.2 Related Work . 48
5.3 Future Work . 49

A Definition Graphs 50

Bibliography 52

2

Chapter 1

Introduction

This chapter motivates the thesis, summarizes the contributions and gives an
overview on how the thesis is structured. The last section of this chapter intro-
duces notational coventions that are used through this thesis.

1.1 Motivation

Smartphones have arrived in our daily lives. They help us organizing and plan-
ing many aspects of our life, for example by reminding us of our appointments,
leading us the way to our leisure location and helping us to stay in touch with
our friends via social networks.

These features are provided by programs that can be installed on the smart-
phone. To make use out of these programs we need to entrust them with our
private data. Moreover smartphones are by their nature tightly connected to
other devices and networks like the internet. This raises the question whether a
program ensures the confidentiality of the entrusted data by not leaking them
to untrusted parties.

Traditional security mechanisms like access control and encryption are not
enough to protect the confidentiality of the entrusted data, because they only
secure the access to the data (see [SM03]). After a successful and legitimate
access, confidential data (or information about confidential data) can be leaked
– accidentally or maliciously – trough the data and control flow of the pro-
gram, to publicly visible outputs. An attacker can then try to conclude private
information by looking at the public outputs. The security mechanism that
Android – the most popular operating system for smartphones (see [PvdM12])
– provides to ensure the confidentiality of the entrusted data is an access control
mechanism (see [DDSW10]). Thus the confidentiality of the entrusted data is
currently not ensured on Android if data is accessed.

Leaks caused by the data and information flow can be described by security
properties that classify the data and information flows within programs as legal
and illegal. The absence of illegal data and information flows is described with
non-interference-like [GM82] properties, which require that public outputs of
a program are independent from private inputs. Due to this independence an
attacker is not able to conclude any private information by looking at the public
outputs.

3

Current security properties (e.g. [Web12]) for the Dalvik virtual machine
(DVM), the software that executes programs on Android, are not adequate for
multithreaded programs, although most Android programs use multiple threads
(see [WK12]). When constructing a security property that is adequate for multi-
threaded programs a desirable characteristic is compositionality, i.e. the parallel
execution of secure (w.r.t. the security property) threads is secure again.

To achieve parallel compositionality many existing security properties (e.g.
[SS00] and [ZM03]) make the worst case assumption that the environment might
access every variable at any point in time. This over-approximation classifies
intuitively secure and useful programs as insecure. The security property in-
troduced in [MSS11] is more precise, because it makes the intended usage of
variables explicit. Thus it does not need to look at all variable accesses as it can
be sure that some will not happen. The variable usage pattern is made explicit
by allowing each thread to make assumptions on how variables are accessed by
other threads and by giving guarantees on how certain variables are access by
the thread itself. If all assumptions are matched by the corresponding guaran-
tees and the guarantees hold, it is permissible to temporarily store confidential
information in public variables and it is possible to temporarily be sure that the
values of certain variables do not change during execution.

The purpose of this thesis is to adapt the SIFUM Security property from
[MSS11] to an abstract transition system that is capable of simulating the DVM
and to argue for concrete instantiations of the transition system that the security
property is adequate.

1.2 Contributions

In this thesis the following contributions were achieved.

• A transition system that is parametric in the instructions and dimensioned
for (possibilistic) multithreaded machines with monitors as synchroniza-
tion concept, such as the DVM.

• Instantiations of the transition system that model parts of the DVM. The
covered parts are the object system, methods, dynamic thread creation
and synchronization via monitors. Not covered are the class hierarchy,
arrays and exceptions.

• An information flow security property for the transition system that takes
advantage out of the intended usage of the shared memory to achieve pre-
cision and compositionality. This security property is based on [MSS11].

1.3 Structure

Chapter 2 gives a short overview of the DVM, describes how the assumption-
guarantee style reasoning fits into this context of the DVM and defines an ab-
stract transition system (ATS) that provides the structure to instantiate (parts
of) the DVM.

In Chapter 3 we define the security policy, describe the capabilities of the
attacker and introduce the new security property in a step-wise manner. Fist

4

we define indistinguishability relations that capture the capabilities of the at-
tacker, then we deal with the effects of concurrently executed threads on the
shared memory and finally we define a strong bisimulation that captures secure
information flow from the perspective of a single thread. The last section of
this chapter sets the stage for proving parallel compositionality of the security
property.

Chapter 4 defines three instantiations of the ATS. A sequential instance, an
instance with a static thread structure and an instance with dynamic thread
creation. For each instance small example programs illustrate how the security
property relates to the instances.

Appendix A contains three graphs that show the dependencies between the
definitions.

1.4 Notational Conventions

In this section we introduce notational conventions that are used in this thesis.
The set N denotes the set of natural numbers including 0.
A→ B denotes the set of total functions from A to B.
A⇀B denotes the set of partial function from A to B.
P(X) := {U : U ⊆ X} denotes the powerset of X.

f [a 7→ b] denotes the function f ′(x) :=

{
b x = a

f(x) otherwise
.

f �A denotes function to the graph {(x, f(x)) : x ∈ A}.
(x :: xs) ∈ An+1 with x ∈ A and xs ∈ An denotes list construction.
Empty lists are denoted as 〈〉.

5

Chapter 2

Transition System

2.1 The Execution Model of the DVM

In this section we identify the information about the Dalvik virtual machine
(DVM) that are needed to define an abstract transition system (ATS) as an
execution model for the DVM.

The DVM is a object-oriented, multi-threaded virtual register machine that
executes byte-code. We model multi-threading, synchronization, the object sys-
tem and methods. To keep the ATS simple we do not consider arrays, the class
hierarchy, static fields and static methods.

At first we introduce the notions that are needed to model the object-oriented
aspect of the DVM. A class is a template for a data-structure together with a
collection of methods and is identified by a class name. A data-structure is
a collection of fields, whereas a field is an identifier for a data container. In
the context of a class fields do not store a value, because we do not consider
static fields. An object is the instantiation of a class that stores data in the
field. Objects are identified by a location on the heap, which is introduced in
the following. A method is a ordered and enumerated collection of byte-code
instructions that is identified within a class by a method name and by the data
types of the method parameters. Every instruction within a method can be
identified with a program point.

The DVM has two kinds of memories. One kind is the heap which stores the
objects. The other kind of memory are register sets. A register set consists of
values that are bound to a register identifier. Most computations are done on
register sets, whereas the heap is used as a place to store information. Therefore
the values on the heap are moved into a register set to do computations.

The programs that are executed by the DVM are collections of classes,
fields and methods. The execution of a Dalvik program starts in the method
activity.onCreate which must be provided by every program (see [Pro]). In
the following we describe the single-threaded execution of a program.

The current state of execution consists of a call stack and a heap. An element
of the call stack (also called stack frame) consists of a reference to the current
instruction, the current method name and a register set. this is the reference
to the object “in” which the execution currently takes place and is saved at
the first register of a register set. On a method call a new call stack element

6

consisting of the reference to the first instruction of the called method, the name
of the called method and a fresh register set – which is filled with the values
of the methods parameters – is put on the stack. On the exit of a method call
the top element of the call stack is removed and the return value of the called
method is saved at a special register identifier in the register set of the caller.

The reference to the current instruction is used to know which instruction is
currently executed and which one will be executed next. Therefore the program
point of the current instruction is also used to continue the execution after a
method call. The method name is needed to know which method is currently
executed. Every method call is provided with a fresh register set, this allows
the previously described parameter and return value passing. The register sets
are accessible only within the current method call, with the exception of the
register for the return value.

The execution of a multi-threaded program has multiple call stacks, each
represents the execution state of a thread. If a thread is spawned a new call
stack is created and if a thread finishes execution the corresponding call stack
is removed. We assume that register sets are not shared between the threads,
therefore the only shared memory is the heap. We have to assume this, since we
were not able to find an official source. However our assumption is assured by a
post [Dev] on the mailing lists of the android project. With this assumption the
purpose of registers becomes clear. They are used as “local variables” for which
the thread can be sure that they are not modified by concurrently executed
threads.

To coordinate the access to the heap, the DVM provides the synchronization
concept monitor. A monitor provides mutually exclusive access to special parts
of methods in the context of an object. The special parts of methods are the
monitor regions and are bounded by the monitor-enter and monitor-exit
instructions.

A thread acquires a monitor for an object by reaching a monitor region. If
no other thread currently owns the monitor for this object, the thread can enter
the monitor region and obtain the monitor for this object. If the monitor is
currently owned by an other thread, the acquiring thread has to wait until the
monitor is released. Threads release monitors if they leave the monitor region
of the corresponding monitor. If they have entered the monitor region multiple
times while owning the monitor, they need to leave the monitor region as often
as they have entered it to release the monitor.

2.2 SIFUM Security in Context of the DVM

The assumption-guarantee style reasoning of SIFUM Security exploits the in-
tended pattern in which threads access variables. Each thread can make explicit
if it expects other threads to not read or not write certain shared variables and
if it guarantees other threads, that it will not read or write a certain shared
variable. These assumptions and guarantees (in the following called modes) can
be made for specific regions in the code.

The current state of the assumptions and guarantees during the execution
of a thread are represented as a mode state. A mode state assigns each mode a
set of shared variables for which the mode is currently active. The mode states
are solely used for the security analysis and will have no other effects on the

7

number of execution steps.
As argued before the only memory in the DVM that is shared between

threads is the heap. Thus the only kind of variables that are shared are fields.

2.3 Abstract Transition System

In this section we formally define an abstract transition system (ATS) that pro-
vides the basis to instantiate it with virtual register machines, like the DVM that
execute byte-code and include features like object-orientation, multi-threading
and synchronization via monitors.

The ATS consists of two main parts, the configurations and the the transi-
tion relation. We will first define the configurations out of small parts, which
correspond to the relevant entities from Section 2.1 and Section 2.2. These
parts are then step-wise composed to the final notion of configurations. Sec-
ondly we define a transition relation on the configurations, that is parametric
in a transition relation for the semantics of the instructions.

2.3.1 Program

The first intermediate goal is to define the notion of a program.
Byte-code languages, like Dalvik, are unstructured and allow arbitrary jumps

in the code. Therefore we need a concept that allows us to point to a specific
instruction (e.g. to describe the destination of a jump) and to pick an entry
point, i.e. the first instruction of a method that shall be executed.

Definition 2.1. The set of program points is PP = N \{0} with a distinguished
entry point 1.

Program points enumerate all instructions in a method. As we cannot pre-
dict how many instructions a method has, PP is big enough to enumerate all
instructions in arbitrary methods.

We assume that the program points are ordered in a way, such that the
syntactic successor of an instruction at program point i has the program point
i+ 1.

We assume that the entry point of a method is always enumerated with 1.
This is adequate since methods have only one entry point.

Class identifiers are used to create new objects of a specific class and to
check if an object is an instance of a certain class. Classes have field identifiers
that are used to access the values of fields.

Definition 2.2. The set of unique class identifiers C contains all class names
in a program and the set of unique field identifiers F contains all field names
in a program.

We require that field identifiers are unique within a program. This require-
ment can easily be fulfilled by e.g. using the class identifiers as a prefix in the
field identifiers. In addition we assume, that a program will access a field of an
object only if the field belongs to the corresponding class. These requirements
allow us to keep the relation between classes and fields in most cases implicit,
as no name clashes can occur and no invalid accesses can happen. Nevertheless
we will use the not further specified function fields : C → F that returns the

8

fields of a class, to be able to talk about possible memory changes (i.e. cancel
out changes that are not possible due to invalid field accesses).

In the DVM a method is uniquely identified by its name, its corresponding
class identifier and its parameter types, and consists of a ordered set of byte-code
instructions. Furthermore all instructions of a program are within a method.

Definition 2.3. The set of methods is M = Mid → (PP⇀ I), where I is a
not further specified set of instructions and Mid is a not further specified set of
method identifiers.

The setMid models the method identifiers of a program. To allow different
criteria for the uniqueness of a method name, we assume that it must be possible
to build a unique identifier for every method (i.e. no method overloading and
no two classes have methods with the same identifiers). Assuming that every
method is called in the correct context and due to the uniqueness of method
identifiers we leave the relation between classes and methods implicit.

The total function from method identifiers to instruction sets encodes the
uniqueness constraint of the method identifier. First, there is no method without
instructions (totality) and second, there is at most one instruction set for a
method identifier (functionality).

The instruction set of a method is a partial function that maps program
points to instructions. It is a partial function because the set of program points
PP is infinite whereas the number of instructions within a method (as a syn-
tactic construct) is finite.

As described in Section 2.1 most computations in the DVM are done on
register sets rather than on the heap. To speak about computations on those
register sets, we introduce register identifiers to refer to registers. In addition to
general purpose register identifiers there is a special register identifier to access
the return value of a method call.

Definition 2.4. The set of register identifiers is R = {vi : i ∈ N}∪{vres}. The
location of the this object is always the register identifier v0.

The register identifiers vi are used for standard computations and to provide
parameters on method calls and return values. The register identifier vres is only
used to store the return value of a method call. This usage pattern is however
not enforced by the ATS. The symbols for the register identifiers are borrowed
from [Pro07].

Now we combine these definitions to define the notion of a program. Intu-
itively a program is a collection of classes that contain fields and methods. The
methods of a program consist of a sequence of byte-code instructions.

Definition 2.5. A program P is a triple (C,F,M) ∈ C ×F ×M.

A program is an instantiation of the set of class identifiers C, the set of field
identifiers F and of the set of methods M. All these sets can be generated
completely from the source code of a given program. Thus a program in the
sense of the above definition is just a syntactic construct without semantics.

To illustrate the definition of programs, we define the following example
program.

9

Example 1. We define the example program E = (C,F,M), where

C = {c}
F = {h, l}

Mid = {m1,m2}
I = {new r c, if r f i, put r z f, nop : f ∈ F , r ∈ R, c ∈ C, i ∈ N, z ∈ Z}

M =

m1, i 7→

new v0 c

if v0 h 3 i = 1

nop i = 2

put 1 v0 l i = 3

 ,

(
m2, i 7→

{
nop i = 1

put 0 v0 l i = 2

)
This program consists of two methods m1 and m2, two field identifier h and

l and a class identifier c. An intuitive semantics for the methods could be the
following. The first method creates an object of class c and saves the reference
to it in register v0. Then method m1 writes the number 1 into the field l of the
created object and delays this write operation for one execution step if the value
of the field h of the created object satisfies some condition. The second method
m2 is scheduled after method m1 – therefore the instance of c already exists –
and writes the number 0 into the field l and delays this operation always for
one execution step.

2.3.2 Call Stack

The next intermediate goal is to define the notion of a call stack.
Locations are used to identify the elements that are saved on the heap, they

correspond to the physical addresses of the heap.

Definition 2.6. The set of locations is L = {li : i ∈ N}.

The set L contains all locations on the heap. We assume that we have no
special locations and no restriction on the number of locations. Due to the
infinite supply of locations, we can never run out of memory.

The DVM uses different kinds of values to do computations and to refer to
values in the memory. Furthermore there is the value null to describe not yet
instantiated objects.

Definition 2.7. The set of values is V = L∪V∪{null}, where V is not further
specified, L∩V = ∅ and null 6∈ V.

The set V is used to model all values that can be saved in registers and
fields. A value can either be a location on the heap, an element of the not
further specified set V or null . The set V depends on the instantiation of the
ATS and is intended to be used for primitive data types. The value null is used
to describe objects that are not yet instantiated.

A call stack is responsible for the execution of methods, the storage of register
sets of methods and for the bookkeeping of method calls.

Definition 2.8. The set of call stacks is CS = (PP ×Mid×(R⇀V))∗. A
call stack with n elements is denoted as 〈f1, . . . , fn〉 and the empty call stack is
denoted as 〈〉.

10

An element of the call stack (also referred to as stack frame) is a triple
consisting of a program point, a method identifier and a register set. A register
set is a partial function that maps register identifiers to values. This function
is defined on all register identifiers that are initialized with some value and
undefined on uninitialized register identifiers. This models the behavior of the
DVM adequately since there is no general default value for register, that could
be used to initialize all register on method calls (i.e. making the function total).

The behavior of the call stack is modeled as a Kleene closure. On a method
call a new stack element is appended at the top of the current stack. This
element contains the information that are provided by the method call. On the
termination of a method the top element is removed. If the call stack is empty
the execution has terminated. This simplification has the consequence, that no
return values can be passed if the call stack contains only one element.

The following example shows an call stack that has a call depth of two.

Example 2. Let m1,m2 ∈Mid and rs, rs′ ∈ (R⇀V) then

(1,m2, rs) :: (34,m1, rs
′) :: 〈〉 ∈ CS

Method m2 was just called (since its current execution is the initial program
point) and method m1 will continue with instruction at program point 34 after
method m2 has returned.

2.3.3 Heap

In the DVM objects are saved on the heap. These objects consist of a class
identifier (e.g. to check if an object is an instance of a certain class) and of a
field assignment. The heap is a dynamically allocated memory.

Definition 2.9. The set of heaps is H = L⇀(C ×(F⇀V)).

The heap is modeled as a partial function that is only defined at a location
l ∈ L if an object is stored at location l to enable dynamic allocation. An heap
element (i.e. an object) consists of a class name together with a function that
maps field identifier to values. We map only field identifiers to values if the
field actually belongs to the class and is initialized. If a field does not belong to
the class or is uninitialized the function is undefined. Therefore the function is
partial.

The functions π1 and π2 are projections for the class part and the fields part
of a heap element.

The following example shows an heap, where the fields lc and hc belong to
the class c and the field fc′ belongs to the class c′. The object at location l1 has
the uninitialized field hc. The field assignments are given by the graphs of the
partial functions.

Example 3. Let lc, hc, fc′ ∈ F and c, c′ ∈ C then h ∈ H where

h : l 7→

(c, {(lc, 2), (hc, 3)}) l = l0

(c, {(lc, 5)}) l = l1

(c′, {(fc′ , 7)}) l = l5

11

2.3.4 Assumptions and Guarantees

In this subsection we model the assumptions and guarantees of SIFUM Security
which was introduced in [MSS11].

The modes represent the assumptions and guarantees threads can make
about the shared variables in programs. In our model the heap is the only
shared memory, therefore the fields are the only variables for which assump-
tions and guarantees make sense. A thread can assume that a field is not read
(asm-noread) or written (asm-nowrite) by other threads. As the counterpart
of the assumptions a thread can guarantee that it does not read (guar -noread)
or write (guar -nowrite) a certain field.

Definition 2.10. The set of modes is

Mod = {asm-noread , asm-nowrite, guar -noread , guar -nowrite}.

The set Mod contains all possible modes, where each mode represents the
possible assumptions and guarantees. The relation between fields and modes is
called mode state. A mode state is intuitively a snapshot of all assumptions and
guarantees at a point in the execution of a thread.

Definition 2.11. The set of mode states is Mds = Mod → P(F).

A mode state is a function that associates to every mode m ∈ Mod a set of
field identifiers. Since field identifiers are unique within a program, we do not
need the class identifier. In this thesis the mode states are not object sensitive,
i.e. if an assumption or guarantee is made for a field f ∈ F then this assumption
or guarantee is made for all class instances to which f belongs to.

The initial mode state mds0 is defined as mds0(m) = ∅ for all m ∈ Mod .

2.3.5 Configurations

Now we can define the configurations of the ATS based on the preceding defi-
nitions.

A local configuration represents a snapshot of the transition system from
the perspective of a single thread. A thread keeps track of its execution state,
of the monitors it currently owns and of its current mode states. In addition a
thread can access the heap, because the heap is shared between all threads.

Definition 2.12. The set of local configurations is

Confl = CS ×(L → N)×Mds ×H×P .

The first part of the local configuration is a call stack, which keeps track of
the execution state. The thread has terminated if the call stack is empty. The
second part models the owned monitors. A thread obtains a monitor for an
object by reaching the corresponding monitor region. Since we identify objects
by locations on the heap and an object can have at most one monitor, we
model the owned monitors as a total function from locations to natural numbers.
Intuitively the function has the following semantics. If a location is mapped to
0 then the thread does not own the monitor for the object at this location. If
the location is mapped to a value n > 0 then the thread owns the monitor
for the object at this location and has entered the monitor region n times. For

12

simplicity locations at which not objects exists are mapped to 0 and the semantic
ensures that monitors can only be acquired for locations at which objects exist.
The initial monitor state mon0 is defined as mon0(l) = 0 for all l ∈ L.

The third and fourth part is a mode state and a heap, respectively. The fifth
part is the program that is currently executed. It is needed to obtain the map
between program points an instructions for each method, since the call stack
saves the program points and method identifiers only.

A global configuration is a snapshot of the entire transition system. It con-
tains the snapshots of all threads that were created until now and a snapshot
of the heap.

Definition 2.13. The set of global configurations of the ATS is

Conf = (CS ×(L → N)×Mds)∗ ×H×P .

The first part of the global configuration is a list of threads. Each thread
consists of a call stack, monitors and a mode state. The number of threads is
not bounded to support dynamic thread creation. The second and third part
consists of a snapshot of the heap and the program, respectively. It is important
to keep track of terminated threads, to access their mode states for the security
analysis. Otherwise it would not be possible to impose certain restrictions on
these mode states, e.g. that they are empty.

2.3.6 Transition Relation

In this section we define transition relations on local and global configurations.
The local transition relation describes the possible execution steps of a single

thread. It is not further specified, to be instantiated with the semantics of the
instructions in an instruction set I.

To model the interaction of a thread with the rest of the transition system
(i.e. synchronization and thread creation) we use events that are emitted on
the execution of instructions. The set of events is:

E = {ε} ∪ {�l,♦l : l ∈ L} ∪ (CS ×(L → N)×Mds)

An instruction can emit no event, which is represented by ε, or it can signalize
the beginning or end of monitor region by �l and ♦l, respectively. The location
of the corresponding object is send as l. The third event is used to create a new
thread, the event itself is the new thread and contains all information that were
available at creation.

Definition 2.14. The local transition relation is a labeled transition relation on
local configurations _⊆ Confl ×E×Confl . We write c1

e
_ c2 for (c1, e, c2) ∈_.

The global transition relation describes the possible execution steps of the
whole transition system and models thread creation and synchronization.

Definition 2.15. The global transition relation is the smallest binary relation
on global configurations ;⊆ Conf ×Conf that satisfies the following rules.

no-event

(csi,moni,mdsi, h)P
ε
_ (cs′i,moni,mds

′
i, h
′)P

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (cs
′
i,moni,mds

′
i), . . . , tn), h′)P

13

thread-create

(csi,moni,mdsi, h)P
t

_ (cs′i,moni,mds
′
i, h
′)P t ∈ (CS × (L → N)×Mds)

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (cs
′
i,moni,mds

′
i), . . . , tn, t), h

′)P

monitor-enter

(csi,moni,mdsi, h)P
�l
_ (cs′i,moni,mds

′
i, h
′)P

l ∈ dom(h) ∀j ∈ N : (1 ≤ j ≤ n ∧ j 6= i) =⇒ πmon(tj)(l) = 0
mon′i = moni[l 7→ moni(l) + 1]

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (cs
′
i,mon

′
i,mds

′
i), . . . , tn), h′)P

where πmon((cs,mon,mds)) = mon

monitor-exit

(csi,moni,mdsi, h)P
♦l
_ (cs′i,moni,mds

′
i, h
′)P

moni(l) > 0 mon′i = moni[l 7→ moni(l)− 1]

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (csi,mon
′
i,mds

′
i), . . . , tn), h′)P

The global transition relation executes the individual threads in a possibilis-
tic manner and models therefore a possibilistic scheduler. There are only four
types of execution steps, one for each event, that are modeled as inference rules.

In the first rule a thread can make a step, if a step in the local transition
relation is possible that does not emit an event. In addition the monitor state
of that thread needs to remain unchanged, since the monitors shall only change
if certain requirements are met.

The second rule allows the creation of threads. While creating a new thread,
the current thread can do modifications of its state, except for the monitor
state. The new thread is appended to the thread pool. Since the execution is
possibilistic the position of the new thread in the thread pool is not relevant.
The position at the end of the thread pool is merely used for space reasons.

The last two rules are concerned with the monitors. The rule monitor-
enter handles he acquiring of monitors. A monitor can be acquired if there is
an object at the location specified by the event and if there is no other thread
that currently owns a monitor for this object. If these conditions are satisfied a
transition is possible and the monitor state of the acquiring thread is increased
by one at the location of the object.

The fourth rule models the case where a thread leaves a monitor region.
A thread can only leave a monitor region if it currently owns a monitor for
the specific object. If this is the case, the monitor state of the thread will be
decreased by one for the objects location. The reentering of a thread into a
monitor region is adequately captured with the natural number representing
the number of times the thread has entered a monitor region.

Now we can define the abstract transition system.

Definition 2.16. An ATS is a transition system that is parametric in the initial
state, the program, the values, the instructions and the local transition relation
ATS(conf 0,P,V, I,_) = (Conf , conf 0,Conf F,;,_,V,P), where conf 0 ∈
Conf and Conf F = {((〈〉,mon1,mds1), . . . , (〈〉,monn,mdsn), h) : h ∈ Heap,
moni ∈ (L → N),mdsi ∈ Mds, 1 ≤ i ≤ n}.

14

An ATS can be instantiated to a transition system by supplying an initial
configuration, a program, a set of values, instructions and a local transition re-
lation that models the semantics of the instructions. The set of configurations
is fixed by the ATS, as well as the global transition relation and the final config-
urations. The final configurations are configurations in which all threads have
an empty call stack. That are exactly those threads that “returned” from the
initially called method.

15

Chapter 3

SIFUM Security

In this chapter we define the new assumption and guarantee style security prop-
erty for the ATS that was defined in the previous chapter.

3.1 Security Policy

With security properties we want to classify which programs preserve the con-
fidentiality of entrusted data. Therefore we need to define what confidentiality
is.

We consider the security domains low and high to partition the data contain-
ers into publicly accessible and into private containers. The security domain low
is assigned to a container that may store confidential information, whereas the
security domain low is assigned to containers that may store public information
only.

Intuitively a program preserves the confidentiality of the entrusted data, if
no confidential information flows into containers with security domain low.

A security policy defines the notion of confidentiality for a concrete program.
It contains the assignment of security domains to containers and the intended
information flow between the security domains.

Definition 3.1. A two-level security policy is a lattice (D,≤, low, high,t,u)
with a field domain assignment ft : F → D where D = {high, low} and ≤ is
the least partial order satisfying low ≤ high.

The containers that hold the data are in our case the fields of objects. The
field domain assignment is not object sensitive to reduce complexity, therefore
every object of a certain class has the same security domains. If ft(f1) ≤ ft(f2)
for some fields f1 and f2 then information are allowed to flow from the field f1
into the field f2. All other information flow is forbidden by the policy.

3.2 Attacker Model

Assuming that access control works correctly, we consider an attacker that can
view the low fields and class identifiers of objects at visible locations before
and after the execution of the program. A location is visible to an attacker if
the object at this location has at least one field with a low security domain.

16

In addition he is able to modify the initial values of low fields, to observe the
duration of the execution and to study the source code of the program.

A potential attack scenario could be the following. The attacker builds a
malicious store application that has the ability to display advertisements and
distributes the application. To make use out of this application the user has to
provide it with his credit card number. The user believes that his credit card
number is only send to the store (e.g. Amazon), in which he trusts. However
the attacker has designed the application to leak the users credit card number
through the advertisement part of the application to an untrusted party. The
untrusted parties are “reachable”, because the application needs full access to
the internet to fetch the advertisements.

When applying this scenario to our formal model, we have to simulate in-
put/output behavior by reading/storing the data in certain fields on the heap,
because our formal model does not support input/output behavior. The credit
card number is stored in a high field in the initial state. We now assume that the
credit card number of the user is stored on the heap before program execution
in a high field. During the program execution the credit card number is leaked
directly into the low field that models the sending of data to the advertisement
servers.

3.3 Indistinguishability Relations

The capabilities of the attacker determine which parts the program state he is
able to see. In consequence an attacker can only distinguish states up to his
capabilities. We capture the attackers capabilities by defining relations that
describe when two states look equivalent to the attacker.

The objects on the heap consist usually of more than one field and locations
can be saved within fields, thus it is not obvious which locations are visible to the
attacker. We approximated the visibility of locations by rendering all locations
visible that contain at least one field with security domain low, following [HP06].
This is an over-approximation since the objects could be completely invisible to
the attacker if their location is saved in a high field. Further the heap stores
dynamically allocated data structures, thus the allocation of locations might be
different in two – otherwise identical – program runs.

Both aspects are captured using a partial map β : L⇀L that is isomorphic
on the locations that contain at least one field with a low security domain. Heap
equivalence will be defined only on those locations that are in the domain of β.

The following definition captures when a partial bijection is an isomorphism
between the visible locations of two heaps.

Definition 3.2. A partial bijection β : L⇀L between heaps h1, h2 ∈ H is safe
if and only if the following conditions are satisfied.

1. dom(β) = {l ∈ dom(h1) : ∃f ∈ dom(π2(h1(l))).ft(f) = low}

2. codom(β) = {l ∈ dom(h2) : ∃f ∈ dom(π2(h2(l))).ft(f) = low}

The requirement on such a partial bijection is that the bijection is only
defined on locations that point to an object with at least one low field. An
object at a location that is in the domain of β is also called visible object, all
other objects are called invisible objects.

17

Another approach would be to consider all locations in a register set that
originate from a low field as visible, together with all locations that are reachable
through the low fields of the objects at these locations. This would allow to
hide objects with low fields by storing their location in a high field. However
the downside of this approach is, that concurrent executed threads could render
previously hidden locations visible by moving a location from a low field into a
register, that is not contained in the register sets of the other threads. Therefore
the visible locations differ depending on the current register set of a thread and
it cannot be ensured that the objects at the visible locations of all register sets
are indistinguishable to an attacker.

Now we define indistinguishability on values up to a partial bijection β.

Definition 3.3. Two values v1, v2 ∈ V are indistinguishable with respect to
a partial bijection β : L⇀L (written v1 ∼β v2) if and only if the following
conditions is satisfied:

1. v1, v2 ∈ V∪{null} =⇒ v1 = v2

2. v1, v2 ∈ L =⇒ v1 ∈ dom(β) ∧ β(v1) = v2

Elements of V and null ’s are indistinguishable if they are equal. If the values
v1 and v2 are locations, they are indistinguishable for the attacker if they can
be associated via β, i.e. the locations belong to low objects.

The attacker can distinguish heap elements in two cases. First, if the objects
are instances of different classes (i.e. the class identifier differs). Second, if there
is a field with a low security domain and with distinguishable values.

Definition 3.4. Two heap elements (c1, f1), (c2, f2) ∈ (C ×F⇀V) are indis-
tinguishable with respect to a partial bijection β : L⇀L and a mode state
mds ∈ Mds (written (c1, f1) ∼mdsβ (c2, f2)) if and only if the following con-
ditions are satisfied

1. c1 = c2

2.
∀fid ∈ dom(f1) : (ft(fid) = low ∧ fid 6∈ mds(asm-noread))

=⇒ fid ∈ dom(f2) ∧ f1(fid) ∼β f2(fid)

3.
∀fid ∈ dom(f2) : (ft(fid) = low ∧ fid 6∈ mds(asm-noread))

=⇒ fid ∈ dom(f1) ∧ f1(fid) ∼β f2(fid)

This definition captures on the one hand the capability of the attacker to
observe values of low fields in the initial and final states. The fields are only
indistinguishable if they are initialized in the same low fields and these fields
contain indistinguishable values. On the other hand it captures the possibility
to temporarily store confidential data in a low field, by requiring indistinguisha-
bility of fields only for fields without a no-read assumption. Note that this is
only adequate if this assumption is matched by the corresponding guarantees,
i.e. no concurrent thread reads that field.

As stated in Section 3.2 the attacker can distinguish all elements at locations
containing at least one field with a low security level. That means, that heaps
can differ in the allocation of objects containing only high fields. This intuition
is captured in the following definition.

18

Definition 3.5. Two heaps h1, h2 ∈ H are indistinguishable modulo modes
with respect to a partial bijection β : L⇀L that is safe on h1 and h2 (written
h1 ∼mdsβ h2) if and only if

∀l ∈ dom(β) : h1(l) ∼mdsβ h2(β(l))

Two indistinguishable heaps have to store an object at all visible locations
(i.e. all locations in the domain of β) and these objects must be indistinguish-
able. Otherwise an attacker could either distinguish the objects or tell from the
absence of one object that the value of some high field has changed.

Example 4. Let l, h, noread, hidden ∈ F and c, c′, c′′ ∈ C then h1, h2 ∈ H
where

h1 : l 7→

(c, {(l, l1), (h, 3)}) l = l0

(c, {(l, l1)}) l = l1

(c′, {(noread, 5)}) l = l4

h2 : l 7→

(c, {(l, l4), (h, 5)}) l = l2

(c, {(l, l4)}) l = l4

(c′, {(noread, 1)}) l = l5

(c′′, {(hidden, 42)}) l = l6

For ft(lc) = ft(noread) = low, ft(hc) = ft(hidden) = high, noread ∈
mds(asm-noread) and β = {(l0, l2), (l1, l4), (l4, l5)} we have h1 ∼mdsβ h2.

The following theorem shows that locations that are saved in a low field
without no-read assumptions point always to visible objects.

Theorem 1. If β is safe for h1 and h2 and h1 ∼mdsβ h2 then for all l ∈ dom(h1)

∀f ∈ dom(π2(h1(l))) : (ft(f) = low ∧ f 6∈ mds(asm-noread) ∧ h1(l)(f) ∈ L)

=⇒ h1(l)(f) ∈ dom(β)

Proof. Let h1, h2 ∈ H and β : L⇀L arbitrary such that β is safe for h1 and h2
and h1 ∼mdsβ h2 for some arbitrary mds ∈ Mds. Let l ∈ dom(h1).

Case l 6∈ dom(β): From the definition of a safe partial bijection we know that
l ∈ dom(β) ⇔ ∃f ∈ dom(π2(h1(l))) : ft(f) = low thus we have l 6∈
dom(β)⇔ ¬∃f ∈ dom(π2(h1(l))) : ft(f) = low. Therefore there exists no
f ∈ dom(π2(h1(l))) such that ft(f) = low, thus the proposition is trivially
satisfied.

Case l ∈ dom(β): From the definition of a safe partial bijection we know that
there is some f ∈ dom(π2(h1(l))). We now assume that ft(f) = low,
f 6∈ mds(asm-noread), h1(l)(f) ∈ L and h1(l)(f) 6∈ dom(β). From the
definition of heap and object indistinguishability and h1 ∼mdsβ h2 we get
that h1(l)(f) ∼β h2(β(l))(f). From h1(l)(f) ∈ L and condition (2) of
value indistinguishability we get that h1(l)(f) ∈ dom(β) which is a con-
tradiction to our assumption. Therefore the proposition holds.

In the DVM the heap is primarily used as a storage. To do computations
on heap elements, these elements need to be moved into a register set. Within

19

this register set the actual computations are done and the result is afterwards
moved back onto the heap.

This usage of the register sets requires, that the security domains of the
fields are reflected in security domains for register identifiers. Even though the
attacker cannot directly access the values of registers, it will become necessary
for defining the security property to have a notion of indistinguishability on
register sets to adequately capture the possible changes of registers that depend
on high fields.

Definition 3.6. Two register sets rs1, rs2 ∈ (R → V) are indistinguishable
with respect to a register domain assignment rt : R → D and a partial bijection
β : L⇀L (written rs1 ∼rtβ rs2) if and only if the following conditions hold

1. ∀r ∈ dom(rs1) : rt(r) = low ⇒ r ∈ dom(rs2) ∧ rs1(r) ∼β rs2(r)

2. ∀r ∈ dom(rs2) : rt(r) = low ⇒ r ∈ dom(rs1) ∧ rs1(r) ∼β rs2(r)

Two register sets are indistinguishable if they agree on all initialized register
identifiers with a low security domain. The security domain assignment for
register identifiers is induced completely by the field domain assignment and the
flow from the heap into the register set. How such a register domain assignment
is constructed is described in detail in the next section.

If the value of a field with a no-read assumption is moved into a field, the
no-read assumption is approximated by a high security domain. This is reason-
able, because concurrently executed threads cannot directly access the values of
registers. Therefore the register do not have to be set to a public value when
the corresponding guarantee is released.

To ensure that no data is leaked on method calls, we lift the notion of
indistinguishability on register sets to call stacks.

Definition 3.7. Two call stacks cs1, cs2 ∈ CS are indistinguishable with respect
to a stack of register domain assignments rts ∈ (R → D)∗ and a partial bijection
β : L⇀L (written cs1 ∼rtsβ cs2) if and only if both call stacks are empty or
cs1 = (p1,mid1, rs1) :: cs′1, cs2 = (p2,mid2, rs2) :: cs′2, rts = rt :: rts′ and the
following conditions are satisfied

1. rs1 ∼rtβ rs2

2. cs′1 ∼rts
′

β cs′2

Two call stacks are indistinguishable if they have the same height and if the
register sets are point-wise indistinguishable. This ensures that no information
is leaked during a method call into a lower stack frame, because the lower register
sets need to be indistinguishable. The requirement that both call stacks must
be at the same height implies that the number of method calls cannot differ
while preserving call stack indistinguishability. This requirement is an over-
approximation to simplify the definition of call stack indistinguishability. The
only methods that would produce indistinguishable call stacks, where the top-
most register sets are indistinguishable are methods, that call them self before
doing any register modifications.

20

3.4 Register Domain Assignments

In this section we discuss how register domain assignments can be constructed
for a given program and security policy.

There are at least two approaches for defining register domain assignments:
A static and a dynamic approach. The goal of both approaches is to reflect
whether a register may contain confidential information.

The static approach needs for every method a register domain assignment
and a method signature. The register domain assignments are constructed by
analyzing the flow into the registers. If a register has a high field as (direct or
indirect) source (i.e. if the value of a high field is moved into a register, or if
the value of such a register is propagated into another register) then the register
has a high security domain.

Example 5. If ft(h) = high and ft(l) = low and m is a method with

m : i 7→

put v0 l i = 1

put v0 h i = 2

const v1 5 i = 3

add v2 v0 v1 i = 4

then the register domain assignment is rt(v0) = rt(v2) = high and rt(r) = low
for all r ∈ R\{v0, v2}.

The method signatures provide security domains for all registers that have
no field (indirectly or directly) as a source, to obtain a total register domain
assignment. In the previous example the method signature assigns low to all
registers except v0 and v2.

The dynamic approach does not fix some register domain assignment for a
method, but rather uses some initial register domain assignment and changes
the security domains of the registers appropriately by observing the flow into the
registers. The advantages of the dynamic approach are, that it is more precise
in the sense that it captures only the sources that are relevant at the current
instruction. Whereas the static approach over-approximates over all sources at
all instructions in the method. In the previous example the register domain
assignment at instruction 1 would be rt(r) = low for all r ∈ R if the initial
register domain assignment assigns low to all registers. The precision of the
static approach could be increased by program transformation, i.e. if a register
has high and low fields as sources, one could introduce a new register and use
one for the high and the other for the low sources (as long as fresh registers are
available).

The other advantage is that except for some initial register domain assign-
ment we do not need method signatures, because we can create a new register
domain assignment for a specific method call from the security domains of the
method parameters.

The disadvantage of the dynamic approach is, that we need to pull the
analysis of the data flow into the security property. The static approach would
also require a program analysis to obtain the register domain assignments, but
since these are fixed, the analysis could be separated from the security property.

21

We use the dynamic approach to take advantage of the increased precision
and to get rid of method signatures, since they would be not directly related to
our notion of the security policy.

The field domain assignments are fixed by the security policy. Therefore
we have to observe the flow into the registers to compute a register domain
assignment. According to the definition of indistinguishability for register sets
and call stacks, we distinguish four classes of instructions that produce data
flow into registers.

The first class contains instructions that manipulate registers in the register
set of the top-most stack frame (e.g. instructions that move the values of fields
into registers). The second class contains instructions that put new stack frames
on the call stack (e.g. method calls) and the third class contains instructions that
remove stack frames from the call stack (e.g. return instructions). The fourth
class contains instructions that create new singleton call stacks (i.e. thread
creation).

We use events that are emitted on the execution of instructions to know to
which class the executed instruction belongs to. Therefore we extend the set of
events E with the following events.

E′ ={r1 . . . rn; f1 . . . fm; c1 . . . cp . r : r1, . . . , rn ∈ R, f1, . . . , fm ∈ F , c1, . . . , cp ∈ C} ∪
{r1 . . . rn : r1, . . . , rn ∈ R} ∪
{Or : r ∈ R} ∪ {O}

E′′ ={cs; r1 . . . rn : cs ∈ CS, r1, . . . , rn ∈ R}

The event r1 . . . rn; f1 . . . fm; c1 . . . cp . r models that the register identifier r
is influenced by the register, field and class identifiers mentioned in the event.
The case n = m = p = 0 is legal and models that the register r depends only
on constant values.

r1 . . . rn is emitted by an instruction from class two and contains the registers
that are copied (as parameters) into the new register identifier. The event O
is emitted on return instructions that do not pass return values to the caller
and the event Or on return instructions that pass the register identifier r to
the caller. The event cs; r1 . . . rn is emitted on thread creation and replaces the
old event for thread creation. The intuition of this event is that the register
set of the created thread is initialized with the values of the register identifiers
r1, . . . , rn.

To treat these new events in the global transition relation, we need to replace
the rule no-event and thread-create by the following rules.

local-event-new

(csi,moni,mdsi, h)P
α
_ (cs′i,moni,mds

′
i, h
′)P α ∈ E′ ∪ {ε}

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (cs
′
i,moni,mds

′
i), . . . , tn), h′)P

thread-create-new

(csi,moni,mdsi, h)P
cs
_ (cs′i,moni,mds

′
i, h
′)P cs; r1 . . . rn ∈ E′′

((t1, . . . , (csi,moni,mdsi), . . . , tn), h)P ; ((t1, . . . , (cs
′
i,moni,mds

′
i), . . . , tn, (cs,mon0,mds0)), h′)P

Our next goal is to establish a link between the emitted events and the
register domain assignments. This link is the update function which updates a

22

register domain assignment according to an event. The events and the update
function deals only with direct flows into registers. Indirect flows are captured in
the security property. This leads to an over-approximation, because a program
that has an indirect flow of confidential data into a register is rendered insecure,
although the attacker could only distinguish these states if the register content
were copied to the heap.

Definition 3.8. The function update : E′ × (R → D)∗ ×Mds → (R → D)∗ is
defined by case distinction on α ∈ E′ and rts ∈ (R → Dom)∗.

1. if α = r1 . . . rnf1 . . . fmc1 . . . cp . r and rts = rt :: rts′ then
rt[r 7→

⊔
{rt(r1), . . . , rt(rn), ft(f1), . . . , ft(fm), ct(c1), . . . , ct(cn)} :: rts′

2. if α = r1 . . . rnf1 . . . fmc1 . . . cp . r, rts = rt :: rts′ and ∃0 < i ≤ m : fi ∈
mds(asm-noread)) then rt[r 7→ high] :: rts′.

3. if α = r1 . . . rn then {(vi, rt(ri+1)) : 0 ≤ i < n} ∪ {(ri, low) : n ≤ i} :: rts

4. if α = Or and rts = rt1 :: rt2 :: rts′ then rs2[vres 7→ rt1(r)] :: rts′

5. if α = O and rts = rt :: rts′ then rts′

6. otherwise rts

where ct : C → D is defined as ct(c) =
d
{ft(f) : f ∈ fields(c)}.

The update function considers only events that effect the register domain
assignments of the current thread. The new event for thread creation is handled
separately in the next section.

The first case of the update function covers flows into a register at the top-
most stack frame. We have to regard everything as sources that has a security
domain. That are prominently register and field identifiers, but also class iden-
tifiers have some kind of security domain. Namely a class identifier is considered
as high if the associate field identifiers have solely high security domains and
low if they have a low field identifier. This captures the visibility of class in-
stances with security domains. This intuition is captured in the definition of
the function ct.

The security domain of the influence register is the least upper bound of
the involved register, field and class identifiers. This is adequate, because if at
least one source has a high security domain, the influenced register will also
have a high domain. If the new value is a constant (i.e. if no source is given)
the new security domain is low =

⊔
∅ because the value is directly visible in

the source code, to which the attacker has access. It is important to regard
the class identifiers here, because otherwise the event for an instruction that
creates a new instance of a class c and saves the location of the created object
in a register r would be .r. Thus the register security domain of r would be
low. This would make it impossible to create an invisible object and to save
its location in register r, since the location of the invisible object would not be
related by β and thus those register sets would be in every case distinguishable.

The second case approximates no-read assumptions. If a register is influ-
enced by at least one field with a no-read assumption, then the security domain
of the influenced register is high. The intuition is, that a field with a no-read

23

assumption can temporarily store confidential values which is taken into account
with the high security domain of the influenced register.

The third case covers instructions for method invocations. The event consists
of the registers that are used as parameters. Intuitively the register set of the
called method is influenced by the method parameters. Here we make the
assumption that those parameters are always copied into the first n registers of
the register set. This assumption is true for our semantics of the DVM in Section
4.1. Therefore we assign the security domains of the registers send in the event
to the first n register of the called method. All other register identifiers are
assigned low, because we assume that the event correctly reflects the behavior
of the instruction and therefore copies values only in the first n registers.

The forth case treats the return from a method call with providing a re-
turn value. To ensure that the security domain of the return value is correctly
reflected in the result register of the caller, we adopt its security domain. In ad-
dition we remove the top register domain assignment to ensure that the height
of the register domain assignment stack corresponds to the height call stack.
The fifth case is similar to the third, but does not treat return values.

The initial register domain assignment rt0 is defined as rt0(r) = low for all
r ∈ R. Further rts0 is the singleton register stack with rt0.

Example 6. Suppose the instruction doStuff v0 v1 f1 f2 (with v0, v1 ∈ R and
f1, f2 ∈ F) emits the event v1f1f2 . v0. This event indicates that the value at
register identifier v0 depends now on the values stored at the register identifier
v1 and the field identifiers f1 and f2. The update function approximates relative
to an register domain assignment and a field domain assignment the security
domain of the register v0. If rt(v0) = high, rt(v1) = low, ft(f1) = low and
ft(f2) = high the register domain assignment with the approximation of v0
security domain is update(rt, v1f1f2 . v0) = rt[v0 7→

⊔
{rt(v1), ft(f1), ft(f2)] =

rt[v0 7→ high].

3.5 Security Property

We now use the indistinguishability relations from Section 3.3 to define a bisim-
ulation relation on local configurations, that relates local configurations if they
have secure information flow.

The idea is that the complete execution of two related local configurations
that are indistinguishable to a low observer, remain indistinguishable in each
execution step even if the heap is modified by concurrently executed threads –
that respect the no-write assumptions of the local configurations – between the
execution steps.

In formalizing this idea we follow the approach of [MSS11] and distinguish
between the execution steps of the thread’s environment and the execution steps
of the thread itself.

First we define two closure conditions that describe the heap modifications
by concurrently executed threads. These closure conditions take only those
memory modifications into account that can actually occur by exploiting the
no-write assumptions. A field with a no-write assumption cannot be changed
by a concurrently executed thread that respects the no-write assumption. The
first closure condition covers modifications on already existing objects and the
second closure condition covers the creation of objects.

24

Definition 3.9. A relation R on local configurations with equal mode states is
closed under globally consistent field modifications if whenever

(cs1,mon1,mds, h1)Rrtsβ (cs2,mon2,mds, h2)

and β is safe for h1 and h2, for all l ∈ L and f ∈ F the following conditions
hold:

1. (l ∈ dom(h1) ∧ f ∈ fields(π1(h(l))) ∧ f 6∈ mds(asm-nowrite) ∧ ft(f) =
high) =⇒ ∀v ∈ V(cs1,mon1,mds, h1[f 7→ v])Rrtsβ (cs2,mon2,mds, h2)

2. (l ∈ dom(β) ∧ f ∈ fields(π1(h(l))) ∧ f 6∈ mds(asm-nowrite) ∧ ft(f) =
low) =⇒ ∀v ∈ V∪{null} ∪ dom(β)
(cs1,mon1,mds, h1[f 7→ v])Rrtsβ (cs2,mon2,mds, h2[f 7→ τ(v)])

3. (cs2,mon,mds, h2)Rrtsβ−1(cs1,mon,mds, h1)

where τ(v) :=

{
β(v) v ∈ dom(β)

v otherwise

The first case covers the modification of high fields without no-write assump-
tion. Such fields can be modified arbitrarily. Since the number of high objects
in indistinguishable heaps can differ, it is not possible to associate high objects
in the related heaps. Therefore the heaps can be modified independently from
each other in high fields without no-write assumptions. The updates of the
heap of the second local configuration are covered by the symmetry condition
(3). Since heap indistinguishability is defined with respect to a partial bijection
β, the symmetric case needs to be defined with respect to the inverse of β. The
first condition also applies to the high fields of low objects, since the high fields
can differ in the initialization state.

The second case covers the modification of low fields with no-write assump-
tion. Every low field is contained by definition in a low object, thus the objects
must be associated via β. Since the new value of the low fields must not contain
a secret, it is modified in an indistinguishable way in both heaps. Thus the new
value can either be a primitive value from V, null or a location of a low object.
The function τ chooses in case of a location, the location of the corresponding
object in the other heap.

The second closure condition covers the creation of new objects by concur-
rently executed threads.

Definition 3.10. A relation R on local configurations with equal mode states
is closed under globally consistent object creations if whenever

(cs1,mon1,mds, h1)Rrtsβ (cs2,mon2,mds, h2)

and β is safe for h1 and h2, for all l ∈ L, f ∈ F and c ∈ C the following
conditions hold

1. (l 6∈ dom(h1) ∧ (∀f ∈ fields(c) : ft(f) = high ∧ f 6∈ mds(asm-nowrite)))
=⇒ (∀fs ∈ (F⇀V) : ¬(dom(fs) ⊆ fields(c)) ∨ (cs1,mon1,mds, h1[l 7→
(c, fs)])Rrtsβ (cs2,mon2,mds, h2))

25

2. (l 6∈ dom(h1) ∧ (∃f ∈ fields(c) : ft(f) = low) ∧ (∀f ∈ fields(c) : f 6∈
mds(asm-nowrite))) =⇒ (∀l′ 6∈ dom(h2) : ∀fs1, fs2 ∈ (F⇀V) :
¬(dom(fs1) ⊆ fields(c) ∧ dom(fs2) ⊆ fields(c)
∧ fs1 � fieldslow(c)(= × ∼β)fs2 � fieldslow(c))
∨(cs1,mon1,mds, h1[l 7→ (c, fs1)])Rrtsβ∪{(l,l′)}(cs2,mon2,mds, h2[l′ 7→ (c, fs2)]))

3. (cs2,mon,mds, h2)Rrtsβ−1(cs1,mon,mds, h1)

where fieldslow(c) = {f ∈ fields(c) : ft(f) = low}

The other kind of modifications that concurrently executed threads can do is
object creation. It is necessary to cover the creation of objects, firstly to ensure
that no secrets are leaked into the heap and secondly because these new ob-
jects can be directly visible in the local configurations by modifying/overwriting
pointers.

The first case covers the creation of high objects. The only case in which a
high object can be created by concurrent threads, is if there is no field with a no-
write assumption, that belongs to the class of the object that shall be created.
If there were such a field the no-write assumption would be violated, because
modes are not object sensitive and after the creation of the object a (maybe
uninitialized) field appears. If these conditions are satisfied a new object on
both heaps (due to the symmetry condition (3)) with an arbitrary assignment
of the fields, belonging to the class of the object, can be created.

The second case covers the creation of low objects. We first ensure that the
class contains at least one low field and search for a location that is not already
used. As in the case for the high object we forbid the creation if some field
has a no-write assumption. If these conditions are satisfied a new object can be
created in both heaps at an unused location. As the newly created object is a
low object, we have to extend the bijection β with the new locations to obtain
a safe β again. In addition we have to ensure that the low fields of both objects
are created equally, i.e. either a field is in both heaps uninitialized or has an
indistinguishable value. This is modeled with the product of equality on field
identifiers and indistinguishability on values (= × ∼β). The intuition is that
all field that are initialized in both objects (i.e. the identifier is contained in
the graph field assignments) have indistinguishable values. All high fields that
belong to the corresponding class can be arbitrary.

One might think that the object insensitivity of assumptions and guarantees
would cause problems when releasing no-read assumptions of low fields. If a no-
read assumption is released the (possible) secret must be overwritten by a public
value, otherwise the attacker could distinguish them. The object insensitivity
implies that we need to overwrite the field in every instance it occurs, which
leads (with most semantics) to multiple computation steps. One could now
argue that concurrently executed threads could “redo” these changes, but this
is not possible, since they can only change low fields in an indistinguishable way.

Now we define a strong bisimulation that captures the memory modifications
of a single thread. This bisimulation takes advantage of the no-read assumptions
to determine whether secrets may be stored in low fields.

Definition 3.11. A relation R on local configurations with equal mode and mon-
itor states that is closed under globally consistent field assignments and closed
under object creations is a strong low bisimulation modulo modes if whenever

26

(cs1,mon,mds, h1)Rrtsβ (cs2,mon,mds, h2) the following conditions hold if β is
safe for h1 and h2:

1. h1 ∼mdsβ h2

2. cs1 ∼rtsβ cs2

3. if (cs1,mon,mds, h1)
α
_ (cs′1,mon

′,mds′, h′1) then there exists cs′2 ∈ CS,
h′2 ∈ H and β′ ⊇ β such that the following holds

(a) (cs2,mon,mds, h2)
γ
_ (cs′2,mon

′,mds′, h′2), β′ is safe for h′1 and h′2
and (cs′1,mon

′,mds′, h′1)R
update(α,rts)
β′ (cs′2,mon

′,mds′, h′2)

(b) if α = cs; r1 . . . rn and γ = cs′; r1 . . . rn then mds′ = mds0 and

(cs,mon0,mds0, h2)R
update(r1...rn,〈〉)
β′ (cs′,mon0,mds0, h

′
2)

4. (cs2,mon,mds, h2)Rrtsβ−1(cs1,mon,mds, h1)

The relation ≈ is the union of all such bisimulations.

The idea is that if two local configurations are related by such a bisimulation
they have secure information flow if they are executed in an environment that
respects no-write assumptions.

The requirement that the environment (i.e. the concurrently executed
threads) respects no-write assumptions is captured by requiring that the re-
lation is closed under globally consistent field assignments and object creations.

If two local configurations are related by such a bisimulation then their heaps
are due to condition (1) indistinguishable to an low observer.

One property of low bisimulations is that if two configurations are related
then only the low parts of the memory need to be indistinguishable, high parts
can be chosen arbitrarily. This is useful to reflect that in the case of a branching
instruction on a high guard, both branches are considered. In our case register
sets influence the control flow inherently, because most instructions of the DVM
use them. Therefore we require indistinguishable register sets with respect to
register domain assignments that capture in which registers secrets are kept.
Condition (2) requires that all register sets that are contained in the call stacks
are pair-wise indistinguishable and that the call stacks have equal height.

Condition (3a) of the definition captures the aspect that condition (1) and
(2) shall be preserved under execution. If the first configuration cannot do a step
(i.e. the thread has terminated), then the condition is satisfied trivially. If it is
possible to do a step, the second configuration needs to do a step such that both
resulting configurations are related by Rrts

′

β′ . The annotations to the relations
are used to reflect changes on the heap and the register sets. To reflect the
possible changes to the register sets we use the function update to create a new
register domain assignment out of the old one. We use the event α to do this.
The event γ can be different to α, the only requirement is, that the call stacks of
the resulting configurations are indistinguishable with respect to register domain
assignment created from α. The changes on the heap are captured by extending
β in a save way. This expansion of β captures the creation of new low objects.

Condition (3b) covers the case of dynamic thread creation. Thread creation
is only allowed if both configurations spawn a new thread, thus the number of
threads does not depend on a high value. With regard to compositionality it is

27

important that no assumptions are active when creating a new thread, because
the new thread would have to fulfill all guarantees for all made assumptions, as
threads can be created everywhere in the program.

Condition (4) is a symmetry condition. Since heap indistinguishability is
defined with respect to a partial bijection β, the symmetric case needs to be
defined with respect to the inverse of β.

Due to condition (4) and condition (3a) we require that either both config-
urations can do a step or none. This ensures that no timing leaks can occur
in the sequential case. However due to concurrency and the presence of syn-
chronization we have to ensure that the monitor states are equal. Otherwise it
would be possible to create a program like the one in the following example.

Example 7. For an instruction set I = {if l f i, goto i, put n f, enter l, exit l,
nop : f ∈ F , l ∈ L, i, n ∈ N} we define the example program E = (C,F,M),
where

C = {c}
F = {h, l}

M =

m1, i 7→

put 0 l0 l i = 1

if l0 h 5 i = 1

enter l0 i = 2

exit l0 i = 3

goto 7 i = 4

nop i = 5

nop i = 6

put 1 l0 l i = 7

,

m2, i 7→

put 1 l0 l i = 1

enter l0 i = 2

nop i = 3

exit l0 i = 4

put 0 l0 l i = 5

The instructions enter and exit model the acquiring and releasing of monitors.
The semantics of all other instructions is standard.

The execution of the program E leads to distinguishable states when starting
with the heaps h1 = {(l0, (c, {(h, 0)}))} and h2 = {(l0, (c, {(h, 1)}))} under a
round-robin scheduler that picks method m1 first.

Using the definition of strong low bisimulation modulo modes, we define
when two programs are secure.

Definition 3.12. Two programs P and Q starting the execution in method m
and n are indistinguishable for the mode state mds (denoted by (P,m) ∼mdslow

(Q,n)) if for all h1, h2 ∈ H such that there exists some safe bijection β : L⇀L
and h1 ∼mdsβ h2 and for all rs1, rs2 ∈ R → V such that rs1 ∼rt0β rs2 and the
following holds

(〈1,m, rs1〉,mon0,mds, h1)P ≈rts0β (〈1, n, rs2〉,mon0,mds, h2)Q

A program P starting in method m is secure if (P,m) ∼mds0low (P,m).

3.6 Compositionality

This section introduces a reference security property that captures secure in-
formation flow modulo modes for multithreaded programs and claims composi-

28

tionality for multithreaded programs that use assumptions and guarantees in a
sound way.

As in [MSS11] we define security for multithreaded programs by a non-
interference-like security property. Intuitively a multithreaded program is se-
cure, if after arbitrary many execution steps the values of low fields are inde-
pendent of secrets if no thread makes a no-read assumptions for them.

Definition 3.13. Two program P in the methods m1, . . . ,mn is secure, if for
all h1, h2 ∈ H and for some safe β : L⇀L such that h1 ∼mds0β h2 and for all

rs1, rs2 ∈ R → V such that rs1 ∼rt0β rs2 and

([(〈1,m1, rs1〉,mon0,mds0), . . . , (〈1,mn, rs1〉,mon0,mds0)], h1)P ;k

([(cs1,mon1,mds1), . . . , (csn,monn,mdsn), . . . , (csn+i,monn+i,mdsn+i)], h
′
1)P

for some k, i ∈ N then there exist call stacks cs′1, . . . cs
′
n+i, a heap h′2 and β′ ⊇ β

such that

([(〈1,m1, rs2〉,mon0,mds0), . . . , (〈1,mn, rs2〉,mon0,mds0)], h1)P ;k

([(cs′1,mon1,mds1), . . . , (cs′n,monn,mdsn), . . . , (cs′n+i,monn+i,mdsn+i)], h
′
2)P

and β′ is safe for h′1 and h′2, and h2 ∼mdsβ′ h′2 for all mds ∈ {mds1, . . . ,mdsn, . . . ,mdsn+i}

If the program starts with heaps and register sets that are indistinguishable
for a low observer the heaps remain indistinguishable modulo no-read assump-
tions after k steps with respect to a safe bijection β′ that captures the creation
of objects. This needs to hold true, even if new threads are created.

Our next goal is to define what it means for a multithreaded program to use
modes in a sound way. As in [MSS11] we split this definition up into two parts.
First we ensure that “globally” every assumption has corresponding guarantees
for all concurrently executed threads (globally sound). Then we ensure that a
thread does not violate the guarantees it provides (locally sound). If a global
configuration is globally sound and all contained local configurations are locally
sound, we say that this global configuration ensures a sound use of modes.

The first step to define global soundness is to define when a tuple of mode
states provides compatible modes (i.e. every assumption is matched by corre-
sponding guarantees).

Definition 3.14. A mode state tuple (mds1, . . . ,mdsn) has compatible modes
if for all i ∈ {1, . . . , n} and for all f ∈ F the following holds

1. f ∈ mdsi(asm-noread) =⇒ ∀j 6= i : f ∈ mdsj(guar -noread)

2. f ∈ mdsi(asm-nowrite) =⇒ ∀j 6= i : f ∈ mdsj(guar -nowrite)

If some mode states makes an assumption about some field f then this
assumption must be matched by a corresponding guarantee in all other mode
states. However the mode state itself need not provide such a guarantee.

As we want to ensure that mode states of global configurations are consistent
during the entire execution, we define in the following all mode state tuples that
are reachable form a global configuration.

29

Definition 3.15. The set of mode state tuples that are reachable from a global
configuration gc ∈ Conf is defined as

{(mds1, . . . ,mdsn) : ∃cs1, . . . , csn ∈ CS,mon1, . . . ,monn ∈ (L → N), h ∈ H .
gc;∗ ((cs1,mon1,mds1), . . . , (csn,monn,mdsn), h)}

We start in the global configuration gc and do arbitrary many steps (;∗

denotes the transitive closure of ;). The mode states of every possible execution
step are reachable from this global configuration. This includes the mode states
of newly created threads.

We say that a global configuration ensures a globally sound use of modes if
all mode state tuples that are reachable have compatible modes.

Now we define what it means for a local configuration to comply with the
given guarantees. Therefore we define what it means that an a local configura-
tion does not read respectively write to a field.

Definition 3.16. A local configuration c does not read a field f if whenever c =

(cs,mon,mds, h)
α
_ (cs′,mon′,mds′, h′), then one of the following conditions

holds:

1. ∀v ∈ V : ∀l ∈ dom(h) : ∃γ ∈ E : f ∈ dom(π2(h(l)))

=⇒ (cs,mon,mds, h(l)[f 7→ v])
γ
_ (cs′,mon′,mds′, h′(l)[f 7→ v])

2. ∀v ∈ V : ∀l ∈ dom(h) : ∃γ ∈ E : f ∈ dom(π2(h(l)))

=⇒ (cs,mon,mds, h(l)[f 7→ v])
γ
_ (cs′,mon′,mds′, h′)

This definition approximates what it means to no read a field. Either the
field can be left unmodified or can be modified, where the rest of the heap and
the register sets stay the same. Thus the value of the field cannot be written
into an other field or register. Since our notion of modes is not object sensitive,
we have to ensure this for all occurrences of the field.

An local configuration does not modify a field f , if the values of the field f
in all instances that contain f remain the same.

Definition 3.17. An local configuration c does not modify a field f if whenever

c = (cs,mon,mds, h)
α
_ (cs′,mon′,mds′, h′) and then for all l ∈ L

(l ∈ dom(h) ∧ f ∈ dom(π2(h(l))) =⇒ π2(h(l))(f) = π2(h′(l))(f)

If we can do an execution step from the local configuration, then the values
of all fields f at all locations l that contain that field must be equal. We do not
have to ensure that the location and the field is contained in the resulting heap,
because objects cannot be destroyed and fields not be uninitialized.

Now we define all local configurations that are potentially reachable from
an local configurations. This allows us to ensure that, no matter how the envi-
ronment changes the heap, the reachable local configurations always adhere to
their guarantees.

In the definition of the reachable local configurations we exploit, like in
[MSS11], the no-write assumptions to reduce the number of possibly reachable
local configurations. Of course this approximation is only sound if the environ-
ment is globally sound with respect to these assumptions.

30

Definition 3.18. The set lReach(lc) of local configurations that are potentially
reachable form the local configuration lc is inductively defined as follows:

1. lc ∈ lReach(lc)

2. ∀lc′ ∈ lReach(lc) : ∀lc′′ : lc′
α
_ lc′′ ⇒ lc′′ ∈ lReach(lc)

3. ∀(cs′,mon′,mds′, h′) ∈ lReach(lc) :
∀h′′ ∈ H : (∀f ∈ mds′(asm-nowrite) :
(∀l ∈ dom(h′) : π2(h′(l))(f) = π2(h′′(l))(f)) ∧
(∀l ∈ dom(h′′) : l 6∈ dom(h′) =⇒ f 6∈ dom(π2(h′′(l)))))
=⇒ (cs′,mon′,mds′, h′′) ∈ lReach(lc)

Local configurations that are reachable from a local configuration lc are
of course the configuration lc itself (condition (1)) and all configurations that
result after one step in a configuration that is already reachable (condition
(2)). Condition (3) covers the heap modifications of the environment. Here
we take advantage out of the no-write assumptions. Namely, all configurations
that are reachable are also reachable with arbitrary heap modifications, except
for the fields with no-write assumptions. These modifications include fields
modifications and object creation.

Now we can combine these notions and define what it means that a local
configuration does not violate the guarantees it provides.

Definition 3.19. A local configuration lc ensures a locally sound use of modes
if for all lc′ = (cs′,mon′,mds′, h′) ∈ lReach(lc) and all f ∈ F the following
conditions hold:

1. f ∈ πmds(lc′)(guar -noread)⇒ lc′ does not read f

2. f ∈ πmds(lc′)(guar -nowrite)⇒ lc′ does not modify f

where πmds((cs,mon,mds, h)) = mds.

A local configuration ensures a locally sound use of modes, if the configura-
tion itself and all reachable local configurations adhere to the guarantees they
provide. I.e. do not read fields with no-read guarantees and do not write fields
with no-write guarantees.

Now we combine local and global soundness to define sound use of modes
for a global configuration.

Definition 3.20. The global configuration ((cs1,mon1,mds1), . . . , (csn,monn,mdsn), h)
ensures a sound use of modes if it ensures a globally sound use of modes and
if each local configuration (csi,moni,mdsi, h) ensures a locally sound use of
modes.

A global configurations uses modes in a sound way, if it ensures a globally
sound use of modes (i.e. all assumptions are matched by corresponding guar-
antees) and all threads ensure a locally sound use of modes (i.e. they do not
violate guarantees that they provide).

Now we can claim the compositionality of the security property.

Claim 1 (Compositionality). Let (P,m1), . . . , (P,mk) be secure programs such
that ([(〈1,m1, rs〉,mon0,mds0), . . . , (〈1,mk, rs〉,mon0,mds0)], h) ensures a sound
use of modes for every heap h and register set rs. Then the multithreaded pro-
gram (P,m1, . . . ,mk) is secure.

31

Chapter 4

Instances of the Transition
System

4.1 Sequential Subset of Dalvik

In this section we define the first instantiation of the ATS. This instantiation
models a sequential subset of the DVM.

Instructions for basic register operations, branching, operations on integers,
method invocations and operations on objects are included. Assumptions and
guarantees on fields can be acquired and released on the execution of every
instruction. This is realized with annotations at instructions. The possible
annotations are defined in the following.

Definition 4.1. The set of annotations for acquiring and releasing modes is
define as Ann = {acq(m, f), rel(m, f) : m ∈ Mod , f ∈ F}.

An annotations consists of a type, a mode and a field identifier. The type
of the annotations is either acq for acquiring a mode for a field identifier or rel
for releasing a mode for a field identifier.

Definition 4.2. The set of sequential instructions is defined as Iseq = I ∪
{//a//i : i ∈ I, a ∈ Ann}, where

I = {nop, move r1 r2, moveresult r, returnvoid, return r, const r z,
instanceof r1 r2 c, newinstance r1 c, goto j, compare r1 r2 r3,

ifeq r1 r2 j, iget r1 r2 f, iput r1 r2 f, invoke r1 . . . rn m, neg r1 r2,

add r1 r2 r3 : z ∈ Z, j ∈ PP, f ∈ F ,m ∈Mid, r ∈ R, (r1, . . . , rn) ∈ Rn}

The set of instructions contains the instructions with and without anno-
tations. As byte-code languages are unstructured we do not put additional
structure into the set of instructions.

In the following we define the operational semantics of the instructions in
Iseq. It is important that the annotations do not have effects on the number
of execution steps. Therefore we define two rules for generating elements of
the local transition relation. The rule Ranno removes the annotation from

32

the instruction, modifies the mode state accordingly to the annotation and ex-

ecutes the instruction according to the auxiliary judgment (cs,mon, h)M
α
_

(cs′,mon′, h′)M . This judgment models the modifications of local configura-
tions without mode states. The rule Rins is responsible for instructions without
annotations. It does not modify the mode state and executes the instruction
according to the same auxiliary judgment as Ranno. Thus there is no timing
difference if an instruction is annotated or not.

Rann
M(m)(i) = //ann//ins

M ′ = M(m)[i 7→ ins] ((i,m, rs) :: cs,mon, h)
α
_ (cs′,mon′, h′)

((i,m, rs) :: cs,mon,mds, h)C,F,M
α
_ (cs′,mon′, update-mds(mds, ann), h′)C,F,M

This rule is responsible for modifying the mode state according to the annotation
on an instruction. The function update−mds is defined as in [MSS11].

update-mds(mds, ann) :=

{
mds[m 7→ mds(m) ∪ {f}] ann = acq(m, f)

mds[m 7→ mds(m) \ {f}] ann = rel(m, f)

To supply the auxiliary judgment with the plain instruction the set of methods
is temporarily modified.

Rins

M(m)(i) = ins ((i,m, rs) :: cs,mon, h)
α
_ (cs′,mon′, h′)

((i,m, rs) :: cs,mon,mds, h)C,F,M
α
_ (cs′,mon′,mds, h′)C,F,M

The rule Rins just passes the values to the auxiliary judgment as described
before.

Now we define the rules for the auxiliary judgment. All rules are as close
as possible to the actual semantics of the DVM. All deviations are described at
the instruction.

Rnop
M(m)(i) = nop

((i,m, rs) :: cs,mon, h)M
ε
_ ((i+ 1,m, rs) :: cs,mon, h)M

The nop instruction moves the program pointer to the next instruction and
leaves the rest of the configuration unchanged. Therefore is does not emit an
event. The security property captures all effects of this instructions adequately,
because it enforces equal timing behavior with condition (3).

Rmove
M(m)(i) = move r1 r2 r2 ∈ dom(rs) rs′ = rs[r1 7→ rs(r2)]

((i,m, rs) :: cs,mon, h)M
r2.r1_ ((i+ 1,m, rs′) :: cs,mon, h)M

The move instruction copies the value stored in register r2 into the register r1
in the top most register set. To reflect this change in the security property,

33

the event r2 . r1 is emitted. Due to this event the security domain of register
identifier r1 is changed to the security domain of the register identifier r2 (due
to the update function). This is adequate because r1 is not directly accessible
for a low observer and does now contain the value of r2. The security domain
of the register is updated to track which values are “under the control” (i.e.
public) of the attacker, i.e. have a low origin.

Rmoveres
M(m)(i) = moveresult r vres ∈ dom(rs) rs′ = rs[r 7→ rs(vres)]

((i,m, rs) :: cs,mon, h)M
vres.r_ ((i+ 1,m, rs′) :: cs,mon, h)M

The moveresult instruction is very similar to the move instruction. The only
difference is, that it copies the value stored in the register vres into the register
r. In the DVM this instruction can only be executed if it follows directly after
an invoke instruction, to keep it simple we do not enforce this. Thus we could
access return values twice, which should not cause any problems. As the rule
for move is only applicable if at the register identifier is actually stored a value,
we cannot access vres before the first method call.

Rreturnvoid
M(m)(i) = returnvoid

((i,m, rs) :: cs,mon, h)M
O
_ (cs,mon, h)M

The returnvoid instruction finishes a method call without providing a return
value to the caller. Thus it removes the top element of the call stack to resume
with the execution of the caller. This effect is reflected in the security prop-
erty by observing the O event, that is emitted by returnvoid. On this event
the update function removes the top element of the stack of register domain
assignments. This corresponds to the removal of the top element of the call
stack.

Rreturn
M(m)(i) = return r r ∈ dom(rs) rs′′ = rs′[vres 7→ rs(r)]

((i,m, rs) :: (i′,m′, rs′) :: cs,mon, h)M
Or
_ ((i′,m′, rs′′) :: cs,mon, h)M

The return instruction is similar to the returnvoid instruction. The only
difference is, that the vres register of the caller is updated with the value of
register r of the called method. This difference is captured by modifying the
security domain of the vres register of the caller by the Or event.

Rconst
M(m)(i) = const r z rs′ = rs[r 7→ z]

((i,m, rs) :: cs,mon, h)M
.r
_ ((i+ 1,m, rs′) :: cs,mon, h)M

The const instruction copies an integer into the register r. This effect is cap-
tured by the event .r. The update function assigns on this event low to the
register identifier r, because the value z is a constant and therefore visible in
the source code, to which the attacker has access.

34

Rinstanceof-true
M(m)(i) = instanceof r1 r2 c

r2 ∈ dom(rs) rs(r2) ∈ dom(h) π1(h(rs(r2))) = c rs′ = rs[r1 → 1]

((i,m, rs) :: cs,mon, h)M
r2.r_ ((i+ 1,m, rs′) :: cs,mon, h)M

Rinstanceof-false
M(m)(i) = instanceof r1 r2 c

rs2 ∈ dom(rs) rs(r2) ∈ dom(h) π1(h(rs(r2))) 6= c rs′ = rs[r1 → 0]

((i,m, rs) :: cs,mon, h)M
r2.r_ ((i+ 1,m, rs′) :: cs,mon, h)M

The instruction instanceof copies the number 1 into the register r1 if the object
at location rs(r2) is an instance of class c, otherwise it copies the number 0 into
register r1. If the object at rs(r2) is a invisible object, its existence shall not be
observable for a low observer. Thus we ensure with the event r2 .r that if r2 has
a high security domain r will also have a high security domain. Notice that if the
object at rs(r2) is invisible, then the security domain of the register identifier
r2 is high. Otherwise a low observer could distinguish those register sets as the
locations of invisible objects cannot be associated with a safe bijection β.

Rnewinstance
M(m)(i) = newinstance r c

l 6∈ dom(h) h′ = h[l 7→ (c, ∅)] rs′ = rs[r 7→ l]

((i,m, rs) :: cs,mon, h)M
c.r
_ ((i+ 1,m, rs′) :: cs,mon, h′)M

A new instance of a class c is created by the newinstance instruction. The
object is saved at an arbitrary free location on the heap. The new object consists
of a class identifier and an empty function. This captures the behavior of the
new-instance instruction in the DVM, which creates an empty object without
initializing the fields. The location of the new object is copied to the register
identifier r. Thus the instruction has an effect on both the current register set
and the heap. The event that is send, describes a flow from c to r. This is due
to the fact that the instantiation of high objects would result in distinguishable
register sets if the location is saved in a low register, since those locations cannot
be associated with a safe bijection β.

Rgoto
M(m)(i) = goto j j ∈ dom(M(m))

((i,m, rs) :: cs,mon, h)M
ε
_ ((j,m, rs) :: cs,mon, h)M

The goto instruction jumps directly to the program point j and does nothing
else. This is captured by the security property by condition (3), that requires
the existence of a step in the other configuration that preserves the indistin-
guishability.

Rcompare
M(m)(i) = compare r1 r2 r3

r2, r3 ∈ dom(rs) rs′ = rs[r1 7→ cmp(rs(r2), rs(r3))]

((i,m, rs) :: cs,mon, h)M
r2r3.r1_ ((i+ 1,m, rs′) :: cs,mon, h)M

35

The compare instruction compares the values of the registers r2 and r2 and
writes a value, depending on the result of the comparison, into the register r1.
The comparison and the computation of that value is done with the following
function

cmp(x, y) =

1 x > y

0 x = y

−1 x < y

This behavior is similar to the behavior of the DVM, as the dvm writes a positive
value in the register if the first value is greater than the second, zero if they are
equal and a negative value if the first value is smaller than the second. As the
value at register identifier r1 is now influenced by two register identifiers, the
new security domain for register r1 is approximated by update with the least
upper bound of the security domains of the register identifiers r2 and r3. This
ensures that the security domain of register r1 is high, if at least one of r2 and
r3 has a high security domain.

Rifeq-true

M(m)(i) = ifeq r1 r2 j
r1, r2 ∈ dom(rs) rs(r1), rs(r2) ∈ Z rs(r1) = rs(r2)

((i,m, rs) :: cs,mon, h)M
ε
_ ((j,m, rs) :: cs,mon, h)M

Rifeq-false

M(m)(i) = ifeq r1 r2 j
r1, r2 ∈ dom(rs) rs(r1), rs(r2) ∈ Z rs(r1) 6= rs(r2)

((i,m, rs) :: cs,mon, h)M
ε
_ ((i+ 1,m, rs) :: cs,mon, h)M

The ifeq instruction jumps to j if the values at the register identifiers r1 and
r2 are integers and equal. Otherwise the execution proceeds with the next
instruction. If at least one of the registers r1 and r2 has a high security domain
then according to condition (2) of the security property high values can differ
in indistinguishable register sets and thus by condition (3) of the bisimulation
the execution of both branches have to lead to indistinguishable memories.

Riget
M(m)(i) = iget r1 r2 f r2 ∈ dom(rs)

f ∈ dom(hs(rs(r2))) rs(r2) ∈ dom(h) rs′ = rs[r1 7→ π2(h(rs(r2)))(f)]

((i,m, rs) :: cs,mon, h)M
r2f.r1_ ((i+ 1,m, rs′) :: cs,mon, h)M

The iget instruction fetches the value of a field f at the location that is saved
at register identifier r2 and copies this value to the register identifier r1. Thus
this method has only an effect on the register set. The new security domain for
r1 that is computed by update is the least upper bound of the security domain
of the register r2 and the field f according to the emitted event. We take the
security domain of the field into account to reflect its security domain in the
register domain assignment.

36

Riput
M(m)(i) = iput r1 r2 f

r1, r2 ∈ dom(rs) rs(r2) ∈ dom(h) c = π1(h(rs(r2)))
f ∈ fields(c) fs = π2(h(rs(r2)))[f 7→ rs(r1)] h′ = h[rs(r2) 7→ (c, fs)]

((i,m, rs) :: cs,mon, h)M
ε
_ ((i+ 1,m, rs) :: cs,mon, h)M

The iput instruction moves the value of register r1 into the field f at the
location saved at the register identifier r2. This is only possible if the field
actually belongs the class of the object at rs(r2). This instruction only modifies
the heap. Condition (1) of the security property ensures that no leaks into low
fields of visible objects are possible.

Rinvoke
M(m)(i) = invoke r1 . . . rn m

′

r1, . . . , rn ∈ dom(rs) rs′ = {(vi, rs(ri+1)) : i ∈ N, i < n}

((i,m, rs) :: cs,mon, h)M
r1...rn_ ((1,m′, rs′) :: (i+ 1,m, rs) :: cs,mon, h)M

The invoke instruction invokes the method m by supplying the values of the
registers r1, . . . , rn as parameters. The parameters are copied into the first
locations of a new register set, that is put on top of the call stack. In the DVM
the registers are copied into the last n registers (cf. [Pro07]), since we have an
infinite supply of registers we use the first n registers. The program point in the
stack frame of the caller is incremented by one, to ensure that after the return

instruction the execution continues in the correct order. The event that is send,
ensures that a new register domain assignment for the register set of the called
method is created, depending on the method parameters. All other register
identifiers are assigned the security domain low, to increase the precision of the
approximations and because the values are constants (i.e. undefined).

Rneg
M(m)(i) = neg r1 r2 r2 ∈ dom(rs) rs′ = rs[r1 7→ −rs(r2)]

((i,m, rs) :: cs,mon, h)M
r2.r1_ ((i+ 1,m, rs′) :: cs,mon, h)M

The instruction neg inverts the sign of the number saved at register identifier
r2 and saves it at register identifier r1. Apart from that it behaves exactly like
the move instruction.

Radd
M(m)(i) = add r1 r2 r3

r2, r3 ∈ dom(rs) rs′ = rs[r1 7→ rs(r2) + rs(r3)]

((i,m, rs) :: cs,mon, h)M
r2r3.r1_ ((i+ 1,m, rs′) :: cs,mon, h)M

The instruction add is shown here to present some other binary operation on
integers. It adds the values at the register identifiers r2 and r3 and saves the
result in the register r1. The effect on the security property is the same as for
the cmp instruction.

Now we define a the transition system for the sequential subset of the DVM.

37

Definition 4.3. DVMseq(conf 0,P) = ATS(conf 0,P,Z, Iseq,_) is a sequential
subset of the DVM for some program P and some initial configuration conf 0

with | conf 0 | = 1.

The initial configurations and the program is left parametric to be able to
execute arbitrary programs. The restriction on the initial state and the absence
of rules for thread creation ensures that only sequential programs are executed.
The set of values are integers and the instructions and their semantics are used
as defined above.

The following lemma shows that a DVMseq program that writes data from
low to high fields is secure.

Lemma 1. The program P = (C,F,M) starting in method m with C = {c},
F = {l, h}, Mid = {m} and

M =

m, i 7→

iget v2 v1 l i = 1

iput v2 v1 h i = 2

returnvoid i = 3

is secure with respect to the domain assignment ft(l) = low and ft(h) = high.

Proof. We show that a strong bisimulation modulo modes R exists such that

((〈1,m, rs1〉,mon0,mds0, h1)PR
rts0
β (〈1,m, rs′1〉,mon0,mds0, h′1))P

holds for all h1, h
′
1 ∈ H such that h1 ∼mds0β h′1 and for all rs1, rs

′
1 ∈ R such

that rs1 ∼rt0β rs′1 for some safe partial bijection β. From the definition of ≈ it
then follows that

((〈1,m, rs1〉,mon0,mds0, h1)P ≈rts0β (〈1,m, rs′1〉,mon0,mds0, h′1))P

Let

R′ := {((〈1,m, rs1〉,mon0,mds0, h1), rts0, β, (〈1,m, rs′1〉,mon0,mds0, h′1)),

((〈1,m, rs1〉,mon0,mds0, h2), rts0, β
′, (〈1,m, rs′1〉,mon0,mds0, h′2)),

((〈2,m, rs2〉,mon0,mds0, h1), rts0, β, (〈2,m, rs′2〉,mon0,mds0, h′1)),

((〈2,m, rs2〉,mon0,mds0, h2), rts0, β
′, (〈2,m, rs′2〉,mon0,mds0, h′2)),

((〈3,m, rs2〉,mon0,mds0, h1), rts0, β, (〈3,m, rs′2〉,mon0,mds0, h′1)),

((〈3,m, rs2〉,mon0,mds0, h2), rts0, β
′, (〈3,m, rs′2〉,mon0,mds0, h′2)),

((〈〉,mon0,mds, h1), 〈〉, β, (〈〉,mon0,mds, h′1))

((〈〉,mon0,mds, h2), 〈〉, β′, (〈〉,mon0,mds, h′2)) :

h1 ∼mds0β h′1, h2 ∼
mds0
β′ h′2, h2 ⊇ h1, h′2 ⊇ h′1, β′ ⊇ β,

rs1 ∼rt0β rs′1,

rs2 = rs1[v2 7→ h1(rs1(v1))(fl)],

rs′2 = rs′1[v2 7→ h′1(rs′1(v1))(fl)]}
R := R′ ∪ {((cs1,mon,mds, h1), rts, β−1, (cs2,mon,mds, h2)) :

((cs2,mon,mds, h2), rts, β, (cs1,mon,mds, h1)) ∈ R′}

38

We now show that R is closed under globally consistent field modifications.
By the definition of R we have that no assumption is made for any field. Fur-
thermore we know that all high fields in h1 (respectively h2) can be modified
arbitrarily while remaining in R, because R relates all configurations such that
h1 ∼mds0β h′1 (respectively h2 ∼mds0β′ h′2). Thus condition (1) holds. The same
argument applies for condition (2), since this condition are describes all changes
to fields such that the heaps remain indistinguishable. We cover these changes,
because we include all configurations with indistinguishable heaps.

The next step is to show that R is closed under globally consistent object
creations. We still know that no assumptions are made in any configuration
contained in R. The fist condition is satisfied, as h1 ∼mds0β h′1 holds for all heaps
with arbitrary allocations of high objects. As R does not contain distinguishable
heaps condition (2) is also satisfied.

To show that R is a strong low bisimulation modulo modes, we make a case
distinction on the elements or R. The symmetry condition (4) is satisfied by
definition of R. Since no instruction sends the event cs, r1 . . . rn condition (3b)
is always true.

Case ((〈1,m, rs1〉,mon0,mds0, h1)Rrts0β (〈1,m, rs′1〉,mon0,mds0, h′1)): Conditions
(1) and (2) are satisfied by definition of R, thus we have to show (3).

From the rules Rins and Riget of the operational semantics we obtain

(〈1,m, rs1〉,mon0,mds0, h1)
v1l.v2_ (〈2,m, rs2〉,mon0,mds0, h1)

where rs2 = rs1[v2 7→ h1(rs1(v1))(l)] if v1 ∈ dom(rs) and rs1(v1) ∈
dom(h1). Otherwise no execution step is possible and condition (3) is
trivially satisfied.

If this execution step is possible, an execution step in the related con-
figuration must be possible too. From the rules Rins and Riget of the
operational semantics we obtain

(〈1,m, rs′1〉,mon0,mds0, h′1)
v1l.v2_ (〈2,m, rs′2〉,mon0,mds0, h′1)

where rs′2 = rs′1[v2 7→ h′1(rs′1(v1))(l)]. The rule Riget is applicable
because from rs1 ∼rt0β rs′1, v1 ∈ dom(rs), rs1(v1) ∈ dom(h1) and the
safety of β, we have rs′1(v1) ∈ dom(h2). By definition of R and rts0 =
update(rts0, v1l . v2)

((〈2,m, rs2〉,mon0,mds0, h1)Rrts0β (〈2,m, rs′2〉,mon0,mds0, h′1))

holds. Thus Condition (3) is satisfied.

Case ((〈2,m, rs2〉,mon0,mds0, h1)Rrts0β (〈2,m, rs′2〉,mon0,mds0, h′1)): To show

〈2,m, rs2〉 ∼rts0β 〈2,m, rs′2〉 it suffices to show rs2 ∼rt0β rs′2, since the
call stack contains only one element and empty call stacks are by defi-
nition indistinguishable. From h1 ∼mds0β h′1, rs1 ∼rt0β rs′1, ft(l) = low
and l 6∈ mds(asm-noread) it follows that h1(rs1(v1)(l) ∼β h′1(rs′1(v1))(l).
From rs1 ∼rt0β rs′1 and h1(rs1(v1)(l) ∼β h′1(rs′1(v1))(l) and the definition

of rs2 and rs′2 we obtain rs2 ∼rt0β rs′2. Thus condition (1) is satisfied.

Condition (2) is satisfied by definition of R.

39

Now we have to show condition (3). From the rules Rins and Riput of
the operational semantics, we obtain

(〈2,m, rs2〉,mon0,mds0, h1)
ε
_ (〈3,m, rs2〉,mon0,mds0, h2)

where h2 = h1(rs2(v1))[h 7→ rs2(v2)] if v1 ∈ dom(rs2) and rs2(v1) ∈
dom(h1). Otherwise no execution step is possible and condition (3) is
satisfied trivially.

If an execution step is possible, an execution step in the related config-
uration must be possible too. From the rules Rins and Riput of the
operational semantics we obtain

(〈2,m, rs′2〉,mon0,mds0, h′1)
ε
_ (〈3,m, rs′2〉,mon0,mds0, h′2)

where h′2 = h′1(rs′2(v1))[h 7→ rs′2(v2)]. The rule Riput is applicable be-
cause from rs2 ∼rt0β rs′2, v1 ∈ dom(rs2), rs2(v1) ∈ dom(h1) and the
safety of β, we have rs′2(v1) ∈ dom(h2). By definition of R and rts0 =
update(rts0, ε)

((〈3,m, rs2〉,mon0,mds0, h2)Rrt0(〈2,m, rs′2〉,mon0,mds0, h′2))

holds. Thus Condition (3) is satisfied.

Case ((〈3,m, rs2〉,mon0,mds0, h2)Rrts0β (〈3,m, rs′2〉,mon0,mds0, h′2)): To show
condition (1) we can apply same argument as in the previous case.

For condition (2) we have to show h2 ∼mds0β h′2. From the definition of h2

and h2, from ft(h) = high and from h1 ∼mds0β h′1 we have h2 ∼mds0β h′2.

Now we have to show condition (3). From the rules Rins and Rreturn-
void of the operational semantics, we obtain

(〈3,m, rs2〉,mon0,mds0, h2)
ε
_ (〈〉,mon0,mds0, h2)

From the rules Rins and Riput of the operational semantics we obtain
the execution step in the related configuration

(〈2,m, rs′2〉,mon0,mds0, h′2)
ε
_ (〈〉,mon0,mds0, h′2)

By definition of R and rts0 = update(rts0, ε)

((〈〉,mon0,mds0, h2)Rrts0β (〈〉,mon0,mds0, h′2))

holds. Thus Condition (3) is satisfied.

Case ((〈〉,mon0,mds0, h1)R
〈〉
β (〈〉,mon0,mds0, h′1)): Condition (1) is trivially sat-

isfied, because empty call stacks are by definition indistinguishable.

For condition (2) applies the same argument as in the previous case.

Condition (3) is trivially fulfilled, because there is no rule of the opera-

tional semantics such that (〈〉,mon,mds, h)
α
_ (cs,mon,mds, h).

The cases in which the environment created new objects and the symmetric
cases are analogous.

40

Now we show that the security property classifies a program with a direct
leak as insecure.

Lemma 2. The program P = (C,F,M) starting in method m with C = {c},
F = {l, h}, Mid = {m} and

M =

m, i 7→

iget v2 v1 h i = 1

iput v2 v1 l i = 2

returnvoid i = 3

is not secure with respect to domain assignment ft(l) = low and ft(h) = high.

Proof. We show that (P,m) ∼mds0low (P,m) does not hold by contradiction.
Let h1, h

′
1 ∈ H such that h1(l0) = (c, {(h, 0), (l, 0)}) and h′1(l0) = (c, {(h, 1), (l, 0)}).

Then β : L⇀L with l0 7→ l0 is safe w.r.t h1 and h′1 since dom(h1) = dom(β) and
dom(h1) = codom(β). Further let rs1, rs

′
1 ∈ (R⇀V) such that rs1 ∼rt0β rs′1

and rs1(v1) = rs′1(v1) = l0.
Assume that R is a strong low bisimulation modulo mds0, such that

(〈1,m, rs1〉,mon0,mds0, h1)Rrt0β (〈1,m, rs′1〉,mon0,mds0, h′1)

Since no instruction sends the event cs, r1 . . . rn condition (3b) is always true.
Conditions (1) and (2) are satisfied by definition and from the semantics

(rules Rins and Riget) we get

(〈1,m, rs1〉,mon0,mds0, h1)
v1h.v2_ (〈2,m, rs2〉,mon0,mds0, h1)

(〈1,m, rs′1〉,mon0,mds0, h′1)
v1h.v2_ (〈2,m, rs′2〉,mon0,mds0, h′1)

with rs2 = rs1[v2 7→ 0] and rs′2 = rs′1[v2 7→ 1]. As the heaps do not change
we have β′ = β.

Now we have to show that

(〈2,m, rs2〉,mon0,mds0, h1)Rrtsβ (〈2,m, rs′2〉,mon0,mds0, h′1)

for rts = update(v1h.v2, rts0) = rt0[v2 7→ high] :: 〈〉 holds. Since the heaps did
not changed condition (1) of strong low bisimulation modulo modes is satisfied.
From rt(v2) = high and the definition of register set indistinguishability we get
rs2 ∼rtβ rs′2 and from call stack indistinguishability we have 〈2,m, rs2〉 ∼rtsβ
〈2,m, rs′2〉. Thus condition (2) is satisfied.

From the semantics (rules Rins and Riput) we get

(〈2,m, rs2〉,mon0,mds0, h2) _ (〈3,m, rs2〉,mon0,mds0, h3)

(〈2,m, rs′2〉,mon0,mds0, h′2) _ (〈3,m, rs′2〉,mon0,mds0, h′3)

with and h3(l0) = (c, {(h, 0), (l, 0)}) and h′3(l0) = (c, {(h, 1), (l, 1)}). Since
no objects were created β′ = β.

Now we have to show that

(〈3,m, rs2〉,mon0,mds0, h3)Rrtβ (〈3,m, rs′2〉,mon0,mds0, h′3)

From ft(l) = low and the definition of value indistinguishability we get that
for l0 ∈ dom(β) that h3(l0)(l) = 0 6∼β 1 = h′3(l0)(l) and therefore h3 6∼mds0β h′3.
Hence condition (1) of strong low bisimilarity modulo modes is not satisfied.
This contradicts our assumption that R is a strong low bisimulation modulo
modes. Therefore the program P (starting in method m) is not secure.

41

4.2 Static Thread Structure

In this section we introduce a multithreaded subset of the DVM with a static
thread structure.

We extend the set of instructions by the instructions enter r and exit r
that model the acquiring and releasing of monitors for an location saved in
register r. The following rules define the semantics of these new instructions.
Note that the monitor state is not set in these rules, but rather set by the global
transition relation to ensure that no incompatible monitor states can occur.

M(m)(i) = enter r r ∈ dom(rs) rs(r) ∈ dom(h)

((i,m, rs) :: cs,mon, h)M
�rs(r)
_ ((i+ 1,m, rs) :: cs,mon, h)M

M(m)(i) = exit r r ∈ dom(rs) rs(r) ∈ dom(h)

((i,m, rs) :: cs,mon, h)M
♦rs(r)
_ ((i+ 1,m, rs) :: cs,mon, h)M

If a location is saved in register r theses rules, send the corresponding enter/leave
event to the global transition relation. Internal timing leaks (compare for the
example in Section 3.5) are avoided by requiring equal mode states.

Now we define the transition system for the DVM subset with a static thread
structure.

Definition 4.4. DVMstat(conf 0,P) = ATS(conf 0,P,Z, Istat,_) is a subset of
the DVM with a static thread structure for some program P and some initial
configuration conf 0, where

Istat = Iseq ∪ {//a//enter r, //a//exit enter r, exit r : r ∈ R, a ∈ Ann}

The transition system contains the extended set of instructions and has no
restrictions on the initial state to support multiple threads at the program start.

If the following program is regarded as a multithreaded program with two
threads, one starting the execution in method m1 the other in m2, then this
program has an internal timing leak when executed under round-robin scheduler
that executes m1 first and with following field domain assignment ft(h) = high
and ft(l) = low.

Lemma 3. The program P = (C,F,M) starting in methods m1 and m2 with

C = {c}
F = {h, l}

Mid = {m1,m2}

M =

m1, i 7→

const v1 1 i = 1

iget v2 v0 h i = 2

if v1 v2 5 i = 3

nop i = 4

put v1 v0 l i = 5

returnvoid i = 6

,

m2, i 7→

nop i = 1

nop i = 2

const v1 0 i = 3

put v1 v0 l i = 4

returnvoid i = 5

is insecure for the domain assignment ft(h) = high and ft(l) = low.

42

Intuitively the branching in m1 delays the assignment of 1 to the field l for
one execution steps. In the case it is not delayed it is executed second last
instruction, the last instruction is the assignment of 0 to the field l in method
m2, which overwrites the old value. If the assignment is delayed the situation
is the other way around.

To make this argument precise, we assume that the thread executing m1 is
secure and lead this to a contradiction.

Proof. We show that (P,m1) ∼mds0low (P,m1) does not hold by contradiction.
Let h1, h

′
1 ∈ H such that h1(l0) = (c, {(h, 0), (l, 0)}) and h′1(l0) = (c, {(h, 1), (l, 0)}).

Then β : L⇀L with l0 7→ l0 is safe w.r.t h1 and h′1 since dom(h1) = dom(β) and
dom(h1) = codom(β). Further let rs1, rs

′
1 ∈ (R⇀V) such that rs1 ∼rt0β rs′1

and rs1(v0) = rs′1(v0) = l0.
Assume that R is a strong low bisimulation modulo modes, such that

(〈1,m1, rs1〉,mon0,mds0, h1)Rrts0β (〈1,m1, rs
′
1〉,mon0,mds0, h′1)

Since no instruction sends the event cs, r1 . . . rn condition (3b) is always true.
Conditions (1) and (2) are satisfied by definition and from the semantics

(rules Rins and Rconst) we get

(〈1,m1, rs1〉,mon0,mds0, h1)
.v1_ (〈2,m1, rs2〉,mon0,mds0, h1)

(〈1,m1, rs
′
1〉,mon0,mds0, h′1)

.v1_ (〈2,m1, rs
′
2〉,mon0,mds0, h′1)

with rs2 = rs1[v1 7→ 1] and rs′2 = rs′1[v1 7→ 1]. As the heaps do not change we
have β′ = β.

Now we have to show that

(〈2,m1, rs2〉,mon0,mds0, h1)Rrts0β (〈2,m1, rs
′
2〉,mon0,mds0, h′1)

since the security domains of the registers stayed the same. As the heaps have
not changed condition (1) is satisfied and as we wrote a constant into register
v1 we have r2 ∼rt0β r′2.

From the semantics (rules Rins and Riget) we get

(〈2,m1, rs2〉,mon0,mds0, h1)
v0h.v2_ (〈3,m1, rs3〉,mon0,mds0, h1)

(〈2,m1, rs
′
2〉,mon0,mds0, h′1)

v0h.v2_ (〈3,m1, rs
′
3〉,mon0,mds0, h′1)

with rs3 = rs2[v2 7→ 0] and rs′3 = rs′2[v2 7→ 1]. As the heaps do not change
we have β′ = β.

Now we have to show that

(〈3,m, rs3〉,mon0,mds0, h2)Rrtsβ (〈3,m, rs′3〉,mon0,mds0, h′2)

for rts = update(v0h . v2, rts0) = rt :: 〈〉 = rt0[v2 7→ high] :: 〈〉 holds. Since the
heaps have not changed condition (1) is satisfied. From rt(v2) = high we get
rs3 ∼rtβ rs′3.

We can apply the rules Rins and Rifeq-false because 1 = rs3(v1) 6=
rs3(v2) = 0, which leads to

(〈3,m1, rs3〉,mon0,mds0, h2)
ε
_ (〈4,m1, rs3〉,mon0,mds0, h2)

43

and we can apply the rules Rins and Rifeq-true) because 1 = r′3(v1) =
r′3(v2) = 1, which leads to

(〈3,m1, rs
′
3〉,mon0,mds0, h′2)

ε
_ (〈5,m1, rs

′
3〉,mon0,mds0, h′2)

Now we have to show that

(〈4,m, rs3〉,mon0,mds0, h2)Rrtsβ (〈5,m, rs′3〉,mon0,mds0, h′2)

holds. Because the register sets and heaps have not changed conditions (1) and
(2) are satisfied satisfied. To check condition (3a), we apply the rules Rins and
Riput, which leads to

(〈5,m1, rs3〉,mon0,mds0, h3)
ε
_ (〈6,m1, rs3〉,mon0,mds0, h4)

As we can apply the Rins and Riput we have the following

(〈4,m1, rs
′
3〉,mon0,mds0, h′3)

ε
_ (〈5,m1, rs

′
3〉,mon0,mds0, h′3)

with h4(l0) = (c, {(h, 1), (l, 1)}).
Now we have to show that

(〈6,m, rs3〉,mon0,mds0, h4)Rrtsβ (〈5,m, rs′3〉,mon0,mds0, h′3)

But from ft(l) = low and the definition of value indistinguishability we get
that for l0 ∈ dom(β) that h4(l0)(l) = 1 6∼β 0 = h′3(l0)(l). Hence condition (2) of
strong low bismiliarity is not fulfilled. This contradicts our assumption that R is
a strong low bisimulation modulo modes. Hence the program is not secure.

4.3 Dynamic Thread Creation

In this section we extend the instance of the previous section with an instruction
for dynamic thread creation.

M(m)(i) = start r1 . . . rn m
rs′ = {(vi, rs(ri+1)) : 0 ≤ i < n} t = (〈1,m, rs′〉,mon0,mds0)

((i,m, rs) :: cs,mon, h)M
t;r1...rn_ ((i+ 1,m, rs) :: cs,mon, h)M

The instruction start creates a new thread that starts the execution in
method m and has a register set that is initialized with the registers r1, . . . , rn.
The is reflected in the security property by the event t; r1 . . . rn that ensures
that the register sets of the new threads are still indistinguishable.

Definition 4.5. DVMdyn(conf 0,P) = ATS(conf 0,P,Z, Idyn) is a subset of the
DVM with support for dynamic thread creation for some program P and some
initial configuration conf 0 where

Idyn = Istat ∪{//a//start r1 . . . rn m, start r1 . . . rn m : r1, . . . , rn ∈ R,m ∈M, a ∈ Ann}

The following program has an indirect leak from field h to l, if it is started
in method m1 independent of the scheduler.

44

Lemma 4. The program P = (C,M,F) starting in method m1 where

C = {c}
F = {h, l}

Mid = {m1,m2,m3}

M =

m1, i 7→

const v1 1 i = 1

iget v2 v0 h i = 2

if v1 v2 6 i = 3

create v0 m2 i = 4

goto 7 i = 5

create v0 m3 i = 6

returnvoid i = 7

,

m2, i 7→

const v1 1 i = 3

put v1 v0 l i = 4

returnvoid i = 5

 ,

m3, i 7→

const v1 0 i = 3

put v1 v0 l i = 4

returnvoid i = 5

is not secure with respect to the domain assignment ft(l) = low and ft(h) =
high.

Method m1 spawns a thread starting in m2 if the field h contains 1, otherwise
it spawns the thread m3. Method m2 writes 1 into the field l and method m3

writes 0 into field l. Thus in principle the program has an classic implicit leak,
with the indirection of thread creation.

To make this argument precise, we assume that the thread executing m1 is
secure and lead this to a contradiction.

Proof. We show that (P,m1) ∼mds0low (P,m1) does not hold by contradiction.
Let h1, h

′
1 ∈ H such that h1(l0) = (c, {(h, 0), (l, 0)}) and h′1(l0) = (c, {(h, 1), (l, 0)}.

Then β : L⇀L with l0 7→ l0 is safe w.r.t h1 and h1 since dom(h1) = dom(β) and
dom(h1) = codom(β). Further let rs1, rs

′
1 ∈ (R⇀V) such that rs1 ∼rt0β rs′1

and rs1(v0) = rs′1(v0) = l0.
Assume that R is a strong low bisimulation modulo modes such that

(〈1,m1, rs1〉,mon0,mds0, h1)Rrts0β (〈1,m1, rs
′
1〉,mon0,mds0, h′1)

Conditions (1) and (2) are satisfied by definition and from the semantics
(rules Rins and Rconst we get

(〈1,m1, rs1〉,mon0,mds0, h1)
.v1_ (〈2,m1, rs2〉,mon0,mds0, h1)

(〈1,m1, rs
′
1〉,mon0,mds0, h′1)

.v1_ (〈2,m1, rs
′
2〉,mon0,mds0, h′1)

with rs2 = rs1[v1 7→ 1] and rs′2 = rs′1[v1 7→ 1]. As the heaps do not change
we have β′ = β.

Now we have to show that

(〈2,m1, rs2〉,mon0,mds0, h1)Rrts0β (〈2,m1, rs
′
2〉,mon0,mds0, h′1)

45

since the security domains of the registers stayed the same. As the heaps did
not changed we have h2 ∼mds0β h′2 and as we wrote a constant into register v1

we have r2 ∼rt0β r′2.
From the semantics (rules Rins and Riget) we get

(〈2,m1, rs2〉,mon0,mds0, h1)
v0h.v2_ (〈3,m1, rs3〉,mon0,mds0, h2)

(〈2,m1, rs
′
2〉,mon0,mds0, h′1)

v0h.v2_ (〈3,m1, rs
′
3〉,mon0,mds0, h′2)

with rs3 = rs2[v2 7→ 0] and rs′3 = rs′2[v2 7→ 1]. As the heaps do not change
we have β′ = β.

Now we have to show that

(〈3,m, rs3〉,mon0,mds0, h2)Rrtsβ (〈3,m, rs′3〉,mon0,mds0, h′2)

for rts = update(v0h . v2, rts0) = rt :: 〈〉 = rt0[v2 7→ high] :: 〈〉 holds. As the
heaps have not changed condition (1) is satisfied. From rt(v2) = high we get
rs3 ∼rtβ rs′3.

We can apply the rules Rins and Rifeq-false because 1 = rs3(v1) 6=
rs3(v2) = 0, which leads to

(〈3,m1, rs3〉,mon0,mds0, h2)
ε
_ (〈4,m1, rs3〉,mon0,mds0, h2)

and we can apply the rules Rins and Rifeq-true) because 1 = r′3(v1) =
r′3(v2) = 1, which leads to

(〈3,m1, rs
′
3〉,mon0,mds0, h′2)

ε
_ (〈5,m1, rs

′
3〉,mon0,mds0, h′2)

Now we have to show that

(〈4,m, rs3〉,mon0,mds0, h2)Rrtsβ (〈5,m, rs′3〉,mon0,mds0, h′2)

holds. Because the register sets and heaps have not changed conditions (1) and
(2) are satisfied. To check condition (3), we apply the rules Rins and Rcreate,
which leads to

(〈5,m1, rs3〉,mon0,mds0, h3)
〈1,m2,rs4〉;v0

_ (〈6,m1, rs3〉,mon0,mds0, h4)

(〈4,m1, rs
′
3〉,mon0,mds0, h′3)

〈1,m3,rs
′
4〉;v0_ (〈5,m1, rs

′
3〉,mon0,mds0, h′3)

where rs4 = rs3 �{v0} and rs′4 = rs′3 �{v0}. According to condition (3b) of
strong low bisimulation modulo modes, we have to show that

(〈1,m2, rs4〉,mon0,mds0, h3)Rrts0β (〈1,m3, rs
′
4〉,mon0,mds0, h′3)

and that no assumptions were made on creation. The second requirement is
trivially satisfied, since we have no assumptions at all. To show the first re-
quirement we proceed as before.

As the heaps have not changed and the register sets are reduced to the same
registers conditions (1) and (2) hold. From Rins and Rconst we get

(〈1,m2, rs4〉,mon0,mds0, h3)
.v1_ (〈2,m2, rs5〉,mon0,mds0, h3)

(〈1,m3, rs
′
4〉,mon0,mds0, h′3)

.v1_ (〈2,m3, rs
′
5〉,mon0,mds0, h′3)

46

with rs5 = rs4[v1 7→ 1], rs′5 = rs′4[v1 7→ 1]. As the heaps do not change we
have β′ = β.

Now we have to show that

(〈2,m1, rs2〉,mon0,mds0, h1)Rrts0β (〈2,m1, rs
′
2〉,mon0,mds0, h′1)

since the security domains of the registers stayed the same. As the heaps did
not changed we have h2 ∼mds0β h′2 and as we wrote a constant into register v1

we have r2 ∼rt0β r′2. To check condition (3), we apply the rules Rins and Riput,
which leads to

(〈2,m2, rs5〉,mon0,mds0, h3)
ε
_ (〈3,m2, rs5〉,mon0,mds0, h4)

(〈2,m3, rs
′
5〉,mon0,mds0, h′3)

ε
_ (〈3,m3, rs

′
5〉,mon0,mds0, h′4)

where h4(l0) = (c, {(h, 0), (l, 1)}) and h4(l0) = (c, {(h, 1), (l, 0)}).
Now we have to show that

(〈3,m, rs5〉,mon0,mds0, h4)Rrtsβ (〈3,m, rs′5〉,mon0,mds0, h′4)

. But from ft(l)low and the definition of value indistinguishability we get that
for l0 ∈ dom(β) that h4(l0)(l) = 1 6∼β 0 = h′3(l0)(l). Hence condition (2) of
strong low bismiliarity is not fulfilled. This contradicts our assumption that R
is a strong low bisimulation modulo modes. Hence the program is not secure
when starting in method m1.

47

Chapter 5

Summary

5.1 Conclusion

This work started with presenting information about the execution model of
the DVM and by setting the assumptions and guarantees from [MSS11] into
relation to this execution model.

After that we modeled a transition system that is parametric in the tran-
sition relation for the semantics of the instructions. This transition system
provides the facilities for multi-threading (using a possibilistic scheduler), syn-
chronization via monitors and dynamic thread creation. While it is designed
to be instantiated with subsets of the DVM, it can be instantiated with all
byte-code languages that have similar requirements on multi-threading. There-
fore this transition system may be of independent interest for other analysis of
multi-threaded byte-code languages.

Based on this transition system we developed a security policy that assigns
security domains to every field. We analyzed the information flow in the tran-
sition system and captured the results in a security property based on [MSS11].
One major problem in this process was the treatment of registers. The chosen
solution is not fully satisfactory, because besides being precise it introduces to
much complexity in the security property. In addition to presenting the security
property we also provide a reference property for multi-threaded programs and
provide the basis for a proof of the parallel compositionality of the developed
security property.

We finished the work by instantiating the transition system with subsets
of the DVM and illustrating the security property on small example programs.
The analysis of these programs showed, that it is not feasible – even compared
to other security properties – to analyze other programs as toy examples by
hand, as the relations become really huge.

5.2 Related Work

Language-based information flow control for byte-code languages is an active
research area (cf. [GS05], [HP06], [BPR07], [BRRS10]). The authors of [BPR07]
introduced a security property and a sound information flow type system for a
large fragment of the JVM. This fragment includes object orientation, methods,

48

exception-handling and arrays, but has no support for multiple threads. Based
on this work [Man11] adapted (parts of) the type system for the DVM with was
further developed and proofed sound in [Web12]. In contrast to this work they
used a standard non-interference property instead of a bisimulation.

With the success of the Android operating system there are attempts (e.g.
[JMF12] and [WK12]) in formalizing the semantics of the DVM. One of those
is SymDroid. SymDroid [JMF12] is a symbolic executor for Dalvik programs,
that is implemented in OCaml. It operates on 16 abstract instructions. Each
abstract instruction represents a group of actual DVM instructions. For example
all binary operations on numbers are grouped to one abstract instruction. The
semantics of the abstract instructions is formalized as a small-step semantics.
However SymDroid lacks support multi-threading.

[WK12] is an other approach to static analysis of the DVM. They have de-
veloped a traditional control flow analysis using abstract domains for the DVM.
This analysis supports even dynamic features like reflection and Javascript in-
terfaces. A prototype implementation of the analysis generates Prolog clauses
these can then be queried for any information that the analysis specifies.

5.3 Future Work

Assumptions and guarantees are in this thesis are not object sensitive. That
means a assumption or guarantee on a field needs to hold for all objects to which
the field belongs to. That includes objects that are created after acquiring
and before releasing a assumption or guarantee. This is in most cases too
restrictive, especially when working with generic classes like e.g. collections.
Those assumption and guarantees would be set for all instances of a collection,
which may be not what you want, if you use collections for several purposes.
Therefore refining the security property to object sensitive assumptions and
guarantees would increase precision and make the property more adequate for
real world programs.

The current security policy is object insensitive, too. That leads to similar
restrictions as the insensitivity of the assumption and guarantees. E.g. it is not
possible to have one collection that has a low security domain and an other with
a high security domain. Therefore it would make sense to refine the security
policy, too.

Analyzing programs by hand using the security property is lengthy, error
prone and time consuming, therefore extending the security property with a
sound type system would pave the way for an automated analysis. Before devel-
oping such a type system, proofing the compositionality of the security property
would increase the confidence in the security property.

49

Appendix A

Definition Graphs

locations (2.6)

program (2.4)

global transition relation (2.15)

global configuration (2.13)

field identifier (2.2)

porgram points (2.1)

methods (2.3)class identifier (2.2)

local transition relation (2.14)

register identifier (2.5)

heap (2.9)

values (2.7)

call stack (2.8)mode states (2.11)

local configuration (2.12)

modes (2.10)

Figure A.1: A depencency graph of the definitions of Chapter 2. The number
in parentheses is the number of the definition. a → b denotes that definition a
uses/referes to definition b.

50

call stack indis. (3.7)

safe β (3.2)object indis. (3.4)

value indis. (3.3)

bisimulation modulo modes (3.11)

update function (3.8)

heap indis. (3.5) closed under field modifications (3.9)closed under object creations (3.10)

security policy (3.1)

program indistinguishability (3.12)

register set indis. (3.6)

Figure A.2: A depencency graph of the definitions of Chapter 3. The number
in parentheses is the number of the definition. a → b denotes that definition
a uses or referes to definition b. The graph does not include definitions from
Chapter 2.

gobally sound use of modes compatible modes (3.14)

does not read (3.16)

sound use of modes (3.20)

reference security property (3.13)

does not modify (3.17)

heap indis. (3.5)

locally sound use of modes (3.19)

reachable local configurations (3.18)

reachable mode states tuples (3.15)

register set indis. (3.6)

Figure A.3: A depencency graph of the definitions of Chapter 3. The number
in parentheses is the number of the definition. a → b denotes that definition
a uses or referes to definition b. The graph does not include definitions from
Chapter 2.

51

Bibliography

[BPR07] Gilles Barthe, David Pichardie, and Tamara Rezk. A certified
lightweight non-interference java bytecode verifier. In Proceed-
ings of the 16th European conference on Programming, ESOP’07,
pages 125–140, Berlin, Heidelberg, 2007. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=1762174.1762189.

[BRRS10] Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld.
Security of multithreaded programs by compilation. ACM Trans.
Inf. Syst. Secur., 13(3), 2010.

[DDSW10] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Mar-
cel Winandy. Privilege Escalation Attacks on Android. In Mike
Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, edi-
tors, ISC, volume 6531 of Lecture Notes in Computer Science, pages
346–360. Springer, 2010.

[Dev] Mailinglist Android Linux Kernel Development. Are the
DVM registers shared between threads? Last accessed
on 06.03.2013. URL: https://groups.google.com/forum/

?fromgroups=#!topic/android-kernel/Y6jGgEaJGx4.

[GM82] Joseph A. Goguen and José Meseguer. Security Policies and Security
Models. In IEEE Symposium on Security and Privacy, pages 11–20,
1982.

[GS05] Samir Genaim and Fausto Spoto. Information flow analysis for java
bytecode. In Proceedings of the 6th international conference on Ver-
ification, Model Checking, and Abstract Interpretation, VMCAI’05,
pages 346–362, Berlin, Heidelberg, 2005. Springer-Verlag.

[HP06] R. R. Hansen and C. W. Probst. Non-interference and erasure
policies for java card bytecode. In 6th International Workshop
on Issues in the Theory of Security (WITS ’06), 2006. URL:
http://www2.imm.dtu.dk/pubdb/p.php?4742.

[JMF12] Jinseong Jeon, Kristopher K. Micinski, and Jeffery S. Forster. Sym-
Droid: Symbolic Execution for Dalvik Bytecode. In Draft, 2012.

[Man11] Christopher Mann. A Static Framework for Privacy Analysis of
Android Applications (Bachelor Thesis), 2011.

52

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions
and Guarantees for Compositional Noninterference. In Proceed-
ings of the 24th IEEE Computer Security Foundations Symposium
(CSF), pages 218–232, Cernay-la-Ville, France, 2011. IEEE Com-
puter Society.

[Pro] The Android Open Source Project. Starting an Activity. Last
accessed on 06.03.2013. URL: http://developer.android.com/

training/basics/activity-lifecycle/starting.html.

[Pro07] The Android Open Source Project. Bytecode for the Dalvik VM,
2007. Last accessed on April 8, 2013. URL: http://source.

android.com/tech/dalvik/dalvik-bytecode.html.

[PvdM12] Christy Pettey and Rob van der Meulen. Gartner Says Worldwide
Sales of Mobile Phones Declined 3 Percent in Third Quarter of 2012;
Smartphone Sales Increased 47 Percent, November 2012. Last ac-
cessed on 15.03.2013. URL: http://www.gartner.com/it/page.
jsp?id=2237315.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas in Com-
munications, 21(1):5–19, 2003.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic Noninterference
for Multi-Threaded Programs. In CSFW, pages 200–214, 2000.

[Web12] Alexandra Weber. A Sound Theory of Analysis for a Certifying App
Store (Bachelor Thesis), 2012.

[WK12] Erik Ramsgaard Wognsen and Henrik Søndberg Karlsen. Static
Analysis of Dalvik Bytecode and Reflection in Android, 2012.

[ZM03] Steve Zdancewic and Andrew C. Myers. Observational determinism
for concurrent program security. In In Proc. 16th IEEE Computer
Security Foundations Workshop, pages 29–43, 2003.

53

